B+a = Ba
C+g = Cg
vậy aB+ He = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Sửa đề: AC=32cm
a) Ta có: \(BC^2=40^2=1600\)
\(AB^2+AC^2=24^2+32^2=1600\)
Do đó: \(BC^2=AB^2+AC^2\)(=1600)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(định lí pytago đảo)
b) Ta có: AM+MC=AC(M nằm giữa A và C)
hay MC=AC-AM=32-7=25cm
Áp dụng định lí pytago vào ΔAMB vuông tại A, ta được
\(MB^2=AM^2+AB^2\)
\(\Leftrightarrow MB^2=7^2+24^2=625\)
hay \(MB=\sqrt{625}=25cm\)
Xét ΔMBC có MB=MC(=25cm)
nên ΔMBC cân tại M(định nghĩa tam giác cân)
⇒\(\widehat{CMB}=180^0-2\cdot\widehat{C}\)(số đo của góc ở đỉnh trong ΔMBC cân tại M)(1)
Ta có: \(\widehat{CMB}+\widehat{AMB}=180^0\)(hai góc kề bù)
hay \(\widehat{AMB}=180^0-\widehat{CMB}\)(2)
Thay (1) vào (2), ta được
\(\widehat{AMB}=180^0-\left(180^0-2\cdot\widehat{C}\right)\)
\(\Leftrightarrow\widehat{AMB}=180^0-180^0+2\cdot\widehat{C}\)
hay \(\widehat{AMB}=2\cdot\widehat{C}\)(đpcm)
Bài 2:
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(gt)
AH là cạnh chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
⇒HB=HC(hai cạnh tương ứng)
b) Ta có: HB=HC(cmt)
mà HB+HC=BC=15cm
nên \(HB=HC=\frac{BC}{2}=\frac{15}{2}=7,5cm\)
Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
hay \(AH^2=AB^2-BH^2=\left(8,5\right)^2-\left(7,5\right)^2=16\)
⇔\(AH=\sqrt{16}=4cm\)
Vậy: AH=4cm
c) Xét ΔHEB vuông tại E và ΔHKC vuông tại K có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔHEB=ΔHKC(cạnh huyền-góc nhọn)
⇒HE=HK(hai cạnh tương ứng)
a Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC và AB=EC
c: Xét ΔAEG có
C là trung điểm của AG
M là trung điểm của AE
Do đó CM là đường trung bình
=>CM//GE
hay GE//BC
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó; ΔMAB=ΔMEC
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó; ABEC là hình bình hành
Suy ra: AB//EC và AB=EC
c: Xét ΔAEG có
M là trung điểm của AE
C là trung điểm của AG
Do đó: MC là đường trung bình
=>MC//GE
hay GE//BC
a, Xét tứ giác AHCE có
D là trung điểm AC (gt)
D là trung điểm EH (H đối xứng vs E qua D)
\(\rightarrow AHCE\) là hbh
Lại có : \(\widehat{H}=90^O\) ( do AH là đường cao của tam giác ABC)
Vậy tứ giác \(AHCE\)là hcn
b, Ta có
H là trung điểm BC ( do H là đường cao của tam giác ABC)
D là trung điểm AC (gt)
\(\rightarrow DH\) là đường trung bình của tam giác ABC
\(\rightarrow DH//AB\) (1)
Mà D thuộc\(EH\rightarrow EH//AB\)
Lại có:
\(EA//CH\) (do\(AHCE\) là hcn)
Mà H thuộc BC\(\rightarrow EA//BC\rightarrow EA//HB\left(2\right)\)
Từ (1) và (2) suy ra EABH là hbh
\(\rightarrow EH=AB\)
Có DE//BC nên: \(\frac{DA}{DB}=\frac{AE}{CE}\left(1\right)\)
Lại có AB//CG nên: \(\frac{DE}{EG}=\frac{AE}{CE}\left(2\right)\)
Từ (1) và (2) có: ĐPCM
b/Có DE//BC nên
\(\frac{HC}{HE}=\frac{BH}{HG}\left(3\right)\)
Có AB//CG nên
\(\frac{HA}{HC}=\frac{BH}{HG}\left(4\right)\)
Từ (3) và (4) có: \(\frac{HC}{HE}=\frac{HA}{HC}\RightarrowĐPCM\)
c/Ta có: \(\frac{HI}{AB}=\frac{CI}{BC}\left(5\right)\)
Và \(\frac{HI}{CG}=\frac{BI}{BC}\left(6\right)\)
Lấy (5) cộng (6) đước: \(\frac{HI}{AB}+\frac{HI}{CG}=1\Rightarrow\frac{1}{AB}+\frac{1}{CG}=\frac{1}{HI}\)
đây là toán lớp mấy vậy?
tại sao chưa cho tên lớp vẫn gửi được mà tui ko được?
Hiểu chết liền ... hic...hic ( T_T )
Đáp số : chị không hiểu gì
aBHe bạn đúng không