K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

Hiểu chết liền ... hic...hic ( T_T )

       Đáp số : chị không hiểu gì

25 tháng 8 2016

aBHe bạn đúng không 

Bài 1: Tam giác ABC có AB = 24cm, AC = 3, BC=40cm. Trên cạnh AC lấy điểm M sao cho AM = 7cm. Chứng minh rằng: a) Tam giác ABC là tam giác vuông; b) ∠AMB =2∠C Bài 2: Cho tam giác ABC có AB = AC = 8,5cm, BC = 15cm. Kẻ AH vuông góc với BC (H ∈ BC) a) Chứng minh HB=HC b) Tính độ dài AH c) Kẻ HE ⊥ AB (E ∈ AB), HK ⊥ AC (K ∈ AC) . So sánh độ dài HE và HK. Bài 3: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của góc HAB cắt...
Đọc tiếp

Bài 1: Tam giác ABC có AB = 24cm, AC = 3, BC=40cm. Trên cạnh AC lấy điểm M
sao cho AM = 7cm. Chứng minh rằng:

a) Tam giác ABC là tam giác vuông;
b) ∠AMB =2∠C

Bài 2: Cho tam giác ABC có AB = AC = 8,5cm, BC = 15cm. Kẻ AH vuông góc với
BC (H ∈ BC)

a) Chứng minh HB=HC
b) Tính độ dài AH
c) Kẻ HE ⊥ AB (E ∈ AB), HK ⊥ AC (K ∈ AC) . So sánh độ dài HE và HK.

Bài 3: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của
góc HAB cắt BC tại E, tia phân giác của góc HAC cắt BC tại D. Chứng minh
rằng AB+AC=BC+DE.

Bài 4: Cho tam giác ABC có ba góc nhọn, kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB). Trên tia đối của tia BD lấy điểm F sao
cho BF=AC. Trên tia đối của tia CE lấy điểm G sao cho CG=AB.
a) Chứng minh ∠ABF = ∠ACG
b) Chứng minh AF = AG và AF ⊥ AG .

1

Bài 1: Sửa đề: AC=32cm

a) Ta có: \(BC^2=40^2=1600\)

\(AB^2+AC^2=24^2+32^2=1600\)

Do đó: \(BC^2=AB^2+AC^2\)(=1600)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(định lí pytago đảo)

b) Ta có: AM+MC=AC(M nằm giữa A và C)

hay MC=AC-AM=32-7=25cm

Áp dụng định lí pytago vào ΔAMB vuông tại A, ta được

\(MB^2=AM^2+AB^2\)

\(\Leftrightarrow MB^2=7^2+24^2=625\)

hay \(MB=\sqrt{625}=25cm\)

Xét ΔMBC có MB=MC(=25cm)

nên ΔMBC cân tại M(định nghĩa tam giác cân)

\(\widehat{CMB}=180^0-2\cdot\widehat{C}\)(số đo của góc ở đỉnh trong ΔMBC cân tại M)(1)

Ta có: \(\widehat{CMB}+\widehat{AMB}=180^0\)(hai góc kề bù)

hay \(\widehat{AMB}=180^0-\widehat{CMB}\)(2)

Thay (1) vào (2), ta được

\(\widehat{AMB}=180^0-\left(180^0-2\cdot\widehat{C}\right)\)

\(\Leftrightarrow\widehat{AMB}=180^0-180^0+2\cdot\widehat{C}\)

hay \(\widehat{AMB}=2\cdot\widehat{C}\)(đpcm)

Bài 2:

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(gt)

AH là cạnh chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

b) Ta có: HB=HC(cmt)

mà HB+HC=BC=15cm

nên \(HB=HC=\frac{BC}{2}=\frac{15}{2}=7,5cm\)

Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

hay \(AH^2=AB^2-BH^2=\left(8,5\right)^2-\left(7,5\right)^2=16\)

\(AH=\sqrt{16}=4cm\)

Vậy: AH=4cm

c) Xét ΔHEB vuông tại E và ΔHKC vuông tại K có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔHEB=ΔHKC(cạnh huyền-góc nhọn)

⇒HE=HK(hai cạnh tương ứng)

a Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔMAB=ΔMEC

b: Xét tứ giác ABEC có

M là trung điểm của AE
M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔAEG có

C là trung điểm của AG

M là trung điểm của AE

Do đó CM là đường trung bình

=>CM//GE

hay GE//BC

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó; ΔMAB=ΔMEC
b: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó; ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔAEG có

M là trung điểm của AE

C là trung điểm của AG

Do đó: MC là đường trung bình

=>MC//GE

hay GE//BC

6 tháng 1 2020

a, Xét tứ giác AHCE có

D là trung điểm AC (gt)

D là trung điểm EH (H đối xứng vs E qua D)

\(\rightarrow AHCE\) là hbh

Lại có : \(\widehat{H}=90^O\) ( do AH là đường cao của tam giác ABC)

Vậy tứ giác \(AHCE\)là hcn

b, Ta có

H là trung điểm BC ( do H là đường cao của tam giác ABC)

D là trung điểm AC (gt)

\(\rightarrow DH\) là đường trung bình của tam giác ABC

\(\rightarrow DH//AB\) (1)

Mà D thuộc\(EH\rightarrow EH//AB\)

Lại có:

\(EA//CH\) (do\(AHCE\) là hcn)

Mà H thuộc BC\(\rightarrow EA//BC\rightarrow EA//HB\left(2\right)\)

Từ (1) và (2) suy ra EABH là hbh

\(\rightarrow EH=AB\)

12 tháng 2 2020

Vẽ hình giúp mình nhé

14 tháng 2 2020

Help me !

19 tháng 4 2020

Có DE//BC nên: \(\frac{DA}{DB}=\frac{AE}{CE}\left(1\right)\)

Lại có AB//CG nên: \(\frac{DE}{EG}=\frac{AE}{CE}\left(2\right)\)

Từ (1) và (2) có: ĐPCM

b/Có DE//BC nên

\(\frac{HC}{HE}=\frac{BH}{HG}\left(3\right)\)

Có AB//CG nên

\(\frac{HA}{HC}=\frac{BH}{HG}\left(4\right)\)

Từ (3) và (4) có: \(\frac{HC}{HE}=\frac{HA}{HC}\RightarrowĐPCM\)

c/Ta có: \(\frac{HI}{AB}=\frac{CI}{BC}\left(5\right)\)

\(\frac{HI}{CG}=\frac{BI}{BC}\left(6\right)\)

Lấy (5) cộng (6) đước: \(\frac{HI}{AB}+\frac{HI}{CG}=1\Rightarrow\frac{1}{AB}+\frac{1}{CG}=\frac{1}{HI}\)

19 tháng 4 2020

Cảm ơn bạn nhé

27 tháng 4 2018

Ai giúp mk với ạ! Mk cảm ơn nhìu lắm!

27 tháng 4 2020

đây là toán lớp mấy vậy?

tại sao chưa cho tên lớp vẫn gửi được mà tui ko được?