Tìm p là số nguyên tố sao cho p +8 ; p +16 cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Với p=2 ta được p+4=6(hợp số)(Loại)
Với p=3 ta được p+4=7(số nguyên tố),p+8=11(snt)(TM)
Làm nốt xét p khác 3 nhé!
A ) nếu p=2 thì p+4=2+4=6(loại)
nếu p=3 thì p+4=3+4=7và p+10=3+10=13(thỏa mãn)
nếu p>3 thì ta có dạng p=3k+1 và p=3k+2
trường hợp 1: p=3k+2 thì p+10=3k+2+10=3k+12 chia hết cho 3 (loại)
trường hợp 2: p=3k+1 thì p+4=3k+1+4=3k+5
mà 3k+5=3k+3+2=3(k+1)+2 \(\Rightarrow\)p+10=3(k+1)+2+10=3(k+1)+12 (loại)
vậy p=3 thì p+10,p+4 là số nguyên tố
B)nếu q=2 thì q+2=2+2=4 (loại)
nếu q=3 thì q+2=3+2=5 và q+8=3+8=11 ( thỏa mãn)
nếu q>3 ta có dạng q=3k+1 và q=3k+2
trường hợp 1: q=3k+1 thì q+8=3k +1 +8=3k + 9 chia hết cho 3 ( loại)
trường hợp 2: q=3k +2 thì q+8=3k+2+8 =3k+10=3k+9+1=3(k+3)+1
\(\Rightarrow\)q+8=3(k+3)+1+8=3(k+3)+9 chia hết cho 3 ( loại)
vậy q=3 thì q+2,q+8 là số nguyên tố
Trường hợp 1: p=3
=>p2+8=9+8=17(nhận)
Trường hợp 2: p=3k+1
\(A=p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9\)(loại)
Trường hợp 3: p=3k+2
\(A=\left(3k+2\right)^2+8=9k^2+12k+4+8=9k^2+12k+12\)(loại)
Xét `p=2 => p^2 + 8 = 2^2 + 8 = 12` ( là hợp số )
`=> p \ne 2`
Xét `p=3 => 3^2 + 8 = 9+8=17` ( là số nguyên tố )`
`=> p=3`
Xét `p>3`
`=> p=3k+1` hoặc `p+3k+2` ( `k in NN )`
TH1 `:` `p=3k+1`
`=> p^2 + 8 = ( 3k+1)^2 + 8 = 9k^2 + 6x + 1 + 8 = 9k^2 + 6k + 9` \(\equiv\) `0`
\(\pmod{3}\) ( là hợp số )
TH2 `:` `p=3k+2`
`=> p^2 + 8 = ( 3k+2)^2 + 8 = 9k^2 + 12k + 4 + 8 = 9k^2 + 12k + 12` \(\equiv\) `0`
\(\pmod{3}\) ( là hợp số )
Vậy `p=3`
a) Với p = 2 thì p + 4; p + 8 không là số nguyên tố.
Với p = 3 thì p + 4; p + 8 là các số nguyên tố.
Nếu p > 3 mà p là số nguyên tố => p = 3k +1 hoặc p = 3k +2 (k ϵ N*)
Ta thấy nếu p = 3k + 1 thì p + 8 = 3k + l + 8 = 3k + 9=> p chia hết cho 3 (loại).
Ta thấy nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 => p chia hết cho 3 (loại).
Vậy ta đã chứng minh được p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.
b) Tương tự 21A.
p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.
phàn dưới mik chép thiếu nha, đề bài đầy đủ là
tìm số nguyên tố p sao cho p+4, p+6, p+10, p+12, p+16 cũng là số nguyên tố
xét p = 2 => p + 8 = 2 + 8 = 10 (loại)
xét p = 3 => p + 8 = 3 + 8 = 11 (tm)
p + 16 = 3 + 16 = 19 (tm)
xét p là snt và p > 3 => p = 3k + 1 hoặc p = 3k + 2
với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) (loại)
với p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) (loại)
vậy p = 3
1 phút đc từng này