Cho H = 2n+15/n+1. Tìm giá trị của n
a) H là phân số
b) H là một số nguyên
NHANH GIÚP EM VỚI ẠI
AI TRẢ LỜI EM TICK CHO Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{12n+1}{2n+3}\) là một phân số khi: \(12n+1\in Z,2n+3\in Z\) và \(2n+3\ne0\)
\(\Leftrightarrow n\in Z\) và \(n\ne-1,5\)
\(b,A=\dfrac{12n+1}{2n+3}=-6\dfrac{17}{2n+3}\)
A là số nguyên khi \(2n+3\inƯ\left(17\right)\Leftrightarrow2n+3\in\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow n\in\left\{-10;-2;-1;7\right\}\)
b, \(A=\dfrac{2n+2}{2n-4}=\dfrac{2n-4+6}{2n-4}=\dfrac{6}{2n-4}\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 5 | 3 | 6 | 2 | 7 | 1 | 10 | -2 |
n | 5/2 ( ktm ) | 3/2 ( ktm ) | 3 | 1 | 7/2 ( ktm ) | 1/2 ( ktm ) | 5 | -1 |
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
Để \(A\)là số nguyên
\(\Rightarrow n-2⋮n+3\)
Mà \(n-2=n+5-3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
\(\Rightarrow n+3\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n+2\in\left\{-2;2;1;-4;4\right\}\)
a: A là phân số khi 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)
Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
a: Để H là phân số thì n+1<>0
hay n<>-1
b: Để H là số nguyên thì \(2n+2+13⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;13;-13\right\}\)
hay \(n\in\left\{0;-2;12;-14\right\}\)