Phân tích đa thức thành nhân tử: x^2-9-x^2(-x^2-9) các bạn giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
\(=5^{^2}.\left(x+5\right)^2-3^2.\left(x+7\right)^2\)
\(=\left(5x+25\right)^2-\left(3x+21\right)^2\)
\(=\left(5x+25+3x+21\right)\left(5x+25-3x-21\right)\)
\(=\left(8x+46\right)\left(2x+4\right)\)
\(=4\left(2x+23\right)\left(x+2\right)\)
= 52 ( x + 5)2 - 32 (x +7)2
=[ 5 ( x +5) ]2 - [ 3 ( x + 7) ]2
= ( 5x + 25)2 - ( 3x + 21)2
= ( 5x + 25 - 3x - 21) - ( 5x + 25 + 3x + 21)
= ( 2x +4) - ( 8x +46)
= -6x - 42
= -6 ( x + 7)
P(x)=x(x+3)(x+1)(x+2)+1
P(x)=(x2+3x)(x2+3x+2)+1
Đặt x2+3x=a
Ta có:
P(x)=a(a+2)+1
P(x)=a2+2a+1
P(x)=(a+1)2
Vậy P(x)=(x2+3x)2
\(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2\left(x^2-2x+1\right)-5x+5-1\right)=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)
\(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)
\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)
\(=\left(x-1\right)\left[2\left(x^2-2x+1\right)-5\left(x-1\right)-1\right]\)
\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)
\(=\left(x-1\right)\left(2x^2-9x+6\right)\)
a) \(14\left(x-y\right)^2+21\left(y-x\right)\)
\(=14\left(x-y\right)^2-21\left(x-y\right)\)
\(=7\left(x-y\right)\left[2\left(x-y\right)-3\right]\)
\(=7\left(x-y\right)\left(2x-2y-3\right)\)
b) \(7x^5\left(y-3\right)-49x^4\left(3-y\right)^3\)
\(=7x^4\left(y-3\right)\left[x+7\left(y-3\right)^2\right]\)
\(=7x^4\left(y-3\right)\left(x+7y^2-42y+63\right)\)
c) \(\left(x^2-9\right)^2-x^2\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(x+3\right)^2-x^2\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left[\left(x+3\right)^2-x^2\right]\)
\(=\left(x-3\right)^2\left(x^2+6x+9-x^2\right)\)
\(=3\left(x-3\right)^2\left(x+3\right)\)
d) \(\left(4x^2-1\right)^2-9\left(2x-1\right)^2\)
\(=\left(2x-1\right)^2\left(2x+1\right)^2-9\left(2x-1\right)^2\)
\(=\left(2x-1\right)^2\left[\left(2x+1\right)^2-9\right]\)
\(=\left(2x-1\right)^2\left(4x^2+4x+1-9\right)\)
\(=4\left(2x-1\right)^2\left(x^2+x-2\right)\)
\(=4\left(2x-1\right)^2\left(x-1\right)\left(x+2\right)\)