tìm x đẻ biểu thức
(x^2-1)^8 + (x+1)^2 -2005
có giả trị nhỏ nhất ( lưu ý các bn (^) có nghĩa là mũ như 2 mũ 5 dc viết là2^50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN biểu thức trên là 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)
Dấu ''='' xảy ra khi x = 5
Vậy GTLN biểu thức trên là -5 khi x = 5
3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xayr ra khi x = 1/2
Vậy GTNN biểu thức là 3/4 khi x = 1/2
4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi x = -1/5
Vậy GTNN biểu thức trên là -1 khi x = -1/5
6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)
\(=-\left(x-4\right)^2+21\le21\)
Dấu ''='' xảy ra khi x = 4
Vậy GTLN biểu thức trên là 21 khi x = 4
Trả lời:
1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2
Vậy GTNN của bt = 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)
\(=-\left(x-5\right)^2-5\le-5\forall x\)
Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5
Vậy GTLN của bt = - 5 khi x = 5
3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5
Vậy GTNN của bt = - 1 khi x = - 1/5
4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTNN của bt = 3/4 khi x = 1/2
5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)
\(=-\left(x-4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4
Vậy GTLN của bt = 21 khi x = 4
\(A=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(A\ge\frac{3}{4};\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy MIN \(A=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
Ta có : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Gía trị nhỏ nhất là \(\frac{3}{4}\) khi \(\left(x+\frac{1}{2}\right)^2=0\)
Vậy \(x=-\frac{1}{2}\)
Chúc bạn học tốt !!!
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
Ta có:
65 × 111 - 13 × 15 × 37
= 5 × 13 × 3 × 37 - 13 × 3 × 5 × 37
= 0
Vì 0 nhân với bất kì số nào cũng = 0 nên biểu thức trên = 0
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(65.111-13.15.37\right)\)
\(\left(1+2+3+...100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(13.5.111-13.15.37\right)\)
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(13.15.37-13.15.37\right)\)
\(=0\)
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)