K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)

Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là 24 khi x=2.

b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)

Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)

Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0

23 tháng 9 2023

Ai trả lời nhanh và đúng mik give tick xanh nhé.

 

6 tháng 11 2021

\(P=\left(3+x\right)^{2022}+\left|2y-1\right|-5\ge-5\\ P_{min}=-5\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\dfrac{1}{2}\end{matrix}\right.\)

16 tháng 7 2015

(x + y) 2006 + 2007 (y - 1) = 0

=> (x + y) 2006 = 0    và    2007 (y - 1) = 0

=> x + y = 0           và     y - 1 = 0

=> x + y = 0         và   y = 0 + 1 = 1

=> x + 1 = 0    và  y = 1

=> x = 0 - 1 = -1  và y = 1 

(x - y - 5) + 2007 (y - 3) 2008 = 0

=> (x - y - 5) = 0        và       2007 (y - 3) 2008 = 0

=>  x - y = 0 + 5 = 5    và       (y - 3)2008 = 0

=> x - y = 5           và        y - 3 = 0    => y = 0 + 3 = 3

=> x - 3  = 5           và  y = 3

=> x = 5 + 3 = 8     và   y = 3

(x - 1) 2 +  (y + 3) 2 = 0

=> (x - 1) 2 = 0   và    (y + 3) 2 = 0

=> x - 1 = 0       và    y + 3 = 0

=> x = 0 + 1 = 1    và     y = 0 - 3 = -3

16 tháng 7 2015

tìm x y thõa mãn đẳng thức

(x+y) ^ 2006 +2007[y-1] = 0

[x-y-5] + 2007(y-3)^ 2008 = 0

(x-1) ^ 2 + (y+3) ^ 2 = 0

Đề như thế này phải ko nhân Shift rồi ấn số 6 là mũ

16 tháng 9 2020

\(x^2-\frac{1}{5}x< 0\) 

\(x\left(x-\frac{1}{5}\right)< 0\) 

TH 1 : 

\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\) 

\(\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\)  \(\Rightarrow0< x< \frac{1}{5}\) 

TH 2 : 

\(\hept{\begin{cases}x< 0\\x-\frac{1}{5}>0\end{cases}}\) 

\(\hept{\begin{cases}x< 0\\x>\frac{1}{5}\end{cases}}\) \(\Rightarrow x=\varnothing\)

Vậy \(0< x< \frac{1}{5}\) là nghiệm của bất phương trình trên 

16 tháng 9 2020

                                                                Bài giải

\(x^2-\frac{1}{5}\cdot x=x\left(x-\frac{1}{5}\right)< 0\)khi \(x\) và \(x-\frac{1}{5}\) đối nhau. Mà \(x>x-\frac{1}{5}\) nên :

\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\Rightarrow\text{ }0< x< \frac{1}{5}\)

\(C=\dfrac{5-x^2}{x^2+3}=\dfrac{-x^2-3+8}{x^2+3}=-1+\dfrac{8}{x^2+3}\)

Ta có: \(x^2>=0\forall x\)

=>\(x^2+3>=3\forall x\)

=>\(\dfrac{8}{x^2+3}< =\dfrac{8}{3}\forall x\)

=>\(\dfrac{8}{x^2+3}-1< =\dfrac{8}{3}-1=\dfrac{5}{3}\forall x\)

=>\(C< =\dfrac{5}{3}\forall x\)

Dấu '=' xảy ra khi x2=0

=>x=0

Vậy: \(C_{Max}=\dfrac{5}{3}\) khi x=0