- p/t biểu thức thành nt:x2-x\(\sqrt{x}\)-5x-\(\sqrt{x}\)-6
- giải pt x\(^3\)-5x=2x2-10
giải hộ mình với.cảm ơn trước ạk !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng CT căn phức tạp : \(\sqrt{A\pm\sqrt{B}}=\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\)
ĐKXĐ : \(-1\le x\le1\)
Áp dụng CT căn phức tạp , ta được : \(\sqrt{1+\sqrt{1-x^2}}=\sqrt{\frac{1+\sqrt{1-1+x^2}}{2}}+\sqrt{\frac{1-\sqrt{1-1+x^2}}{2}}\)
\(=\sqrt{\frac{1+\left|x\right|}{2}}+\sqrt{\frac{1-\left|x\right|}{2}}=\hept{\begin{cases}\frac{1}{\sqrt{2}}\left(\sqrt{1+x}+\sqrt{1-x}\right)\text{ nếu x }\ge0\\\frac{1}{\sqrt{2}}\left(\sqrt{1-x}+\sqrt{1+x}\right)\text{ nếu x }< 0\end{cases}}\)( kết quả như nhau )
\(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\sqrt{1-x^2}+\left(1-x\right)\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
\(\Rightarrow M=\frac{1}{\sqrt{2}}.\frac{\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)}{2+\sqrt{1-x^2}}\)
\(=\frac{1}{\sqrt{2}}.\left[\left(1+x\right)-\left(1-x\right)\right]=x\sqrt{2}\)
\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)
\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)
\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)
\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)
\(=\left(-1\right)^{2018}+2018=2019\)
a) \(\frac{28\times7-45\times7+7\times18}{45\times14}\)
\(=\frac{7\left(28-45+7\right)}{45\times14}\)
\(=\frac{7\times\left(-10\right)}{45\times14}=\frac{-1}{9}\)
b) \(\frac{12.3-2.6}{4.5.6}\)
\(=\frac{2.6.3-2.6}{4.5.6}\)
\(=\frac{2.6\left(3-1\right)}{2.2.5.6}\)
\(=\frac{2.6.2}{2.2.5.6}\)\(=\frac{1}{5}\)
\(1,3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3[\left(x^2-2xy+y^2\right)-4z^2]\)
\(=3\left[\left(x-y\right)^2-4z^2\right]\)
\(=3\left(x-y-2x\right)\left(x-y+2z\right)\)
\(2,x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=\left(x^2-5x\right)+\left(3x-15\right)\)
\(=x\left(x-5\right)+3\left(x-5\right)\)
\(=\left(x+3\right)\left(x-5\right)\)
Phương trình có nghiệm x1,x2
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=\frac{\sqrt{10}}{2}\\x_1x_2=\frac{1}{4}\end{cases}}\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\frac{10}{4}-\frac{1}{2}=2\)
Khi đó
\(P=\sqrt{x_1^4+8\left(2-x_1^2\right)}+\sqrt{x_2^4+8\left(2-x^2_2\right)}\)
\(=\sqrt{\left(x_1^2-4\right)^2}+\sqrt{\left(x^2_2-4\right)^2}\)
Mà \(x^2_1+x^2_2=2\)nên \(x^2_1< 2,x^2_2< 2\)
=> \(P=4-x_1^2+4-x^2_2=8-2=6\)
Vậy P=6
Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)
Bien doi PT thanh \(a^2+4b^2=5ab\)
\(\Leftrightarrow a^2-5ab+4b^2=0\)
\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)
\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)
\(\Leftrightarrow65+x=65-x\)
\(\Leftrightarrow x=0\left(n\right)\)
\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)
\(\Leftrightarrow65+x=64.65-64x\)
\(\Leftrightarrow65x=64.65-65\)
\(\Leftrightarrow x=63\left(n\right)\)
Vay nghiem cua PT la \(x=0,x=63\)
1/ (x + 1)(x - √x - 6)