K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

(3-12x)(x-1)+(12x-8)(x+2)+x2=52

3(x-1)-12x(x-1)+12x(x+2)-8(x+2)+x2=52

3x-3-12x2+12+12x2+24x-8x-16+x2=52

(3x+24x-8x)+(12-3-16)+(12x2-12x2+x2)=52

19x-7+x2=52

x(19-x)=52+7=59

mà 59 là số ng tố nên x rỗng

Vậy x E \(\theta\)

22 tháng 8 2016

https://coccoc.com/search/math#query=3(1-4x).(x-1)%2B4.(3x-2).(x%2B2)%2Bx2+%3D52++T%C3%ACm+x+

10 tháng 2 2017

Do (x2-5).(x2-10)<0

suy ra :x2-5 và x2-10 trái dấu

+)với x2-5<0suy ra x2<5

và x2-10>0 suy ra x2>10 

suy ra 10<x2<5 suy ra không tồn tại x

+)Với x2-5>0 suy ra:x2>5

Và x2-10 <0 suy ra:x2<10

suy ra 5<x2<10

suy ra xthuộc các số:6;7;8;9

+)Với x2=6 suy ra: x không tồn tại

+)VỚi x2=7 suy ra:x không tồn tại

+Với x2=8 suy ra: x không tồn tại

+)với x2=9 suy ra x=3 hoặc x=-3

Vậy x=3 hoặc x=-3

\(\left(x^2-5\right)\left(x^2-10\right)< 0\)

Th1 : \(\hept{\begin{cases}x^2-5< 0\\x^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2< 10\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 10\end{cases}}}\)

18 tháng 8 2018

giúp mình vớiiii

20 tháng 8 2018

c)  \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)

\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

d) \(2x^3+3x^2+3x+1=\left(2x+1\right)\left(x^2+x+1\right)\)

e)  \(2x^3-5x^2+5x-3=\left(2x-3\right)\left(x^2-x+1\right)\)

a: Thay x=-3 vào B, ta được:

\(B=\dfrac{2\cdot\left(-3\right)^2}{3\cdot\left(-3\right)+6}=\dfrac{2\cdot9}{-9+6}=\dfrac{18}{-3}=-6\)

b: \(A=\dfrac{2x^2+20+3x-6-7x-14}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x}{x+2}\)

19 tháng 8 2021

3x.(x-2)-x2+2x=0

⇔3x2-6x-x2+2x=0

⇔2x2-4x=0

⇔2x(x-2)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

vậy x=0 và x=2

19 tháng 8 2021

3x(x-2)-x^2+2x=0

<=>3x(x-2)-x(x-2)=0

<=>(3x-x)(x-2)=0

<=>2x(x-2)=0

<=>2x=0 hoặc x-2=0

<=>x=0 hoặc x=2

NV
21 tháng 4 2023

\(\Delta=\left(m-1\right)^2+8>0;\forall m\) nên pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)

\(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=1\)

\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}\right)^2+\left(\dfrac{x_2-1}{x_2+1}\right)^2=1\)

\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}+\dfrac{x_2-1}{x_2+1}\right)^2-2\left(\dfrac{x_1-1}{x_1+1}\right)\left(\dfrac{x_2-1}{x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{\left(x_1-1\right)\left(x_2+1\right)+\left(x_1+1\right)\left(x_2-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{2x_1x_2-2}{x_1x_2+x_1+x_2+1}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{-6}{m-2}\right)^2+2\left(\dfrac{m}{m-2}\right)=1\) 

\(\Leftrightarrow36\left(\dfrac{1}{m-2}\right)^2+4\left(\dfrac{1}{m-2}\right)+1=0\)

Pt trên vô nghiệm nên ko tồn tại m thỏa mãn yêu cầu

NV
21 tháng 4 2023

Tới đó đặt \(\dfrac{1}{m-2}=t\) là thành 1 pt bậc 2 bình thường, bấm máy thấy nó vô nghiệm là đủ kết luận rồi em