tìm x : | x2 | x + 1 | | = x2 + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`
`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left(x^2+3x+1\right)^2+x\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=\left(x^2+3x+1\right)^2+x\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)=t^2+x\) (với \(t=x^2+3x+1\))
\(\Leftrightarrow t^2-1=t^2+x\)
\(\Leftrightarrow x=-1\).
b) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)=\left(x^2+8x+11\right)^2+2x\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)=\left(x^2+8x+11\right)^2+2x\)
\(\Leftrightarrow\left(t-4\right)\left(t+4\right)=t^2+2x\) (với \(t=x^2+8x+11\))
\(\Leftrightarrow t^2-16=t^2+2x\)
\(\Leftrightarrow x=-8\)
c) \(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)=63\)
\(\Leftrightarrow\left(x^3-1\right)\left(x^3+1\right)=63\)
\(\Leftrightarrow x^6-1=63\)
\(\Leftrightarrow x^6=64\)
\(\Leftrightarrow x=\pm2\)
https://onlinemath.vn/cau-hoi/viet-1-doan-van-tong-phan-hop-khoang-12-cau-phan-tich-kho-tho-thu-2-bai-que-huong-trong-do-su-dung-1-cau-cam-than-vs-cau-ghep-chi-ro.8109170456376 help
\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)
\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)
\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Lời giải:
a.
$|2x-5|=12-3x$
Nếu $x\geq \frac{5}{2}$ thì $2x-5=12-3x$
$\Leftrightarrow x=3,4$ (thỏa mãn)
Nếu $x< \frac{5}{2}$ thì: $5-2x=12-3x$
$\Leftrightarrow x=7$ (loại)
Vậy......
b.
$4x=|x+1|+|x+2|+|x+3|\geq 0$
$\Rightarrow x\geq 0$
Do đó: $|x+1|+|x+2|+|x+3|=(x+1)+(x+2)+(x+3)=3x+6$
Vậy: $3x+6=4x$
$\Leftrightarrow x=6$ (thỏa mãn)
c.
$|x^2+|x+2||=x^2+3$
$\Leftrightarrow x^2+|x+2|=x^2+3$
$\Leftrightarrow |x+2|=3$
$\Leftrightarrow x+2=3$ hoặc $x+2=-3$
$\Leftrightarrow x=1$ hoặc $x=-5$
d.
$|x^2-3|=6$
$\Leftrightarrow x^2-3=6$ hoặc $x^2-3=-6$
$\Leftrightarrow x^2=9$ (chọn) hoặc $x^2=-3< 0$ (loại)
$\Leftrightarrow x=\pm 3$
a) \(\left(x-1\right)\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
b) \(x+1x^2+1=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)với mọi x.
=> Pt vô nghiệm.
c) \(x^2+4x=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
P/s: Check lại đề ý b nhé.
a) Ta có:(x-1)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy: S={1;-5}
b) Ta có: \(x^2+x+1=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)(Vô lý)
Vậy: \(S=\varnothing\)
c) Ta có: \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
`x^2=3`
`=>x=\sqrt{3}\or\x=-\sqrt{3}`
`x^2=36`
`<=>x^2=(+-6)^2`
`<=>x=+-6`
`x^2=25`
`<=>x^2=(+-5)^2`
`<=>x=+-5`
`2x^2+(-20)=55`
`<=>2x^2-20=55`
`<=>2x^2=75`
`<=>x^2=75/2`
`<=>x=+-\sqrt{75/2}`
`2(x-1)^2+5^0=9`
`<=>2(x-1)^2+1=9`
`<=>2(x-1)^2=8`
`<=>(x-1)^2=4`
`<=>x-1=2\or\x-1=-2`
`<=>x=3\or\x=-1`