Giả sử x=\(\frac{a}{m}\), y=\(\frac{b}{m}\)(a,b,m\(\in\)Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z=\(\frac{a+b}{2m}\)thì ta có x < z < y.
Cảm ơn những bạn đã giải giùm mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
\(x>y\Rightarrow a>b\)
\(\Rightarrow\frac{a}{m}=\frac{2a}{2m}>\frac{a+b}{2m}>\frac{2b}{2m}=\frac{b}{m}\)
\(\Rightarrow x>z>y\)
Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
biết đường mà cảm ơn đi, hahaha:
theo đề bài x và y đã cho suy ra: a=x.m và b=y.m. Nên ta thay vào z sẽ có a+b/2m = x.m+y.m=2m
x=a/m suy ra x cũng bằng 2a/2m nên bằng 2xm/2m...Mà x.m+y.m (dòng trên) lớn hơn 2xm do y>x nên ta được z>x
Tương tự với y
Vậy x < z < y (đpcm) haha ♥
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
ta có: x < y hay a/m < b/m => a < b
so sánh x,y,z ta chuyển chúng cùng mẫu: 2m
x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m
* Mà a < b :
=> a + a < b + a
hay 2a < b + a
=> x < Z (1)
* mà a < b:
=> a + b < b + b
hay a + b < 2b
=> Z < y (2)
từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y
Ta có x < y ; m > 0
=> \(\frac{a}{m}< \frac{b}{m}\)
=> a < b (vì m > 0)
Lại có x = \(\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}< \frac{a+b}{2m}=y\)(vì a < b nên a + a < a + b)
=> x < z (1)
Mặt khác \(y=\frac{b}{m}=\frac{2b}{2m}=\frac{b+b}{2m}>\frac{a+b}{2m}=z\)(vì b > a nên b +b > b + a)
=> y > z (2)
Từ (1) và (2) => x < z < y (đpcm)
Ta có \(x=\frac{a}{m}=\frac{2a}{2m}\); \(y=\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b => 2a<a+b (1)
=>a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b
=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<z<y ( đpcm)
cảm ơn bạn nhiều Nguyễn Tuấn Minh