So sánh: C=1999^2000+1/1999^1999+1và D=1999^1999+1/1999^1998+1
Giúp với mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
Ta có: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>1\) ( vì tử > mẫu )
Do đó: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>\dfrac{1999^{2000}+1+1998}{1999^{1999}+1+1998}=\dfrac{1999^{2000}+1999}{1999^{1999}+1999}=\dfrac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}=\dfrac{1999^{1999}+1}{1999^{1998}+1}=A\)
Vậy B > A
Chúc bạn học tốt
\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)
\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)
Vậy...
Đặt A=1998/1999+1999/2000 B=1998+1999/1999+2000 =1998/1999+2000 + 1999/1999+2000 Vì 1998/1998>1998/1999+2000 1999/2000>1999/1999+2000 Nên A>B
Đặt A=1998/1999+1999/2000
B=1998+1999/1999+2000
=1998/1999+2000 + 1999/1999+2000
Vì 1998/1998>1998/1999+2000
1999/2000>1999/1999+2000
Nên A>B
ta thấy 19991999 + 1 / 19992000 + 1 < 1 và 1998 > 0
nên ta có: A < 19991999 + 1 + 1998 / 19992000 + 1 + 1998
< 19991999 + 1999 / 19992000 + 1999
< 1999(19991998 + 1) / 1999(19991999 + 1)
< 19991998 + 1 / 19991999 + 1
< B
Vậy A < B
\(C=\frac{1999^{1999}+1}{1999^{2000}+1}<\frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999.\left(1999^{1998}+1\right)}{1999.\left(1999^{1999}+1\right)}\)
\(=\frac{1999^{1998}+1}{1999^{1999}+1}\)\(=D\)
=> C<D
Ai k mik mik k lại. chúc các bạn thi tốt
\(\frac{1999^{1999+1}}{1999^{2000+1}}=1-\frac{1}{1999^{2000+1}};\)\(\frac{1999^{1998+1}}{1999^{1999+1}}=1-\frac{1}{1999^{1999+1}}\)
Vì \(1-\frac{1}{1999^{2000+1}}< 1-\frac{1}{1999^{1999+1}}\)nên \(\frac{1999^{1999+1}}{1999^{2000+1}}>\frac{1999^{1998+1}}{1999^{1999+1}}\)