K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Chọn đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Xét hình thoi ABCD có hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường

Suy ra   A O   ⊥   B O   ⇒   Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án =   90 °

Ta có Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án =    90 °  không đổi mà cố định

⇒ Quỹ tích điểm O là nửa đường tròn đường kính AB trừ hai điểm A và B

27 tháng 7 2017

Chọn đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Xét hình thoi ABCD có hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường

Suy ra AO ⊥ BO ⇒ Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án = 90°

Ta có Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án = 90° không đổi mà cố định

⇒ Quỹ tích điểm O là nửa đường tròn đường kính AB trừ hai điểm A và B

3 tháng 7 2017

Giải bài 45 trang 86 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dự đoán: Quỹ tích cần tìm là nửa đường tròn đường kính AB.

Chứng minh phần thuận:

ABCD là hình thoi

⇒ AC ⊥ BD ( hình thoi có 2 đường chéo vuông góc với nhau)

⇒ Giải bài 45 trang 86 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy quỹ tích của O là nửa đường tròn đường kính AB.

Chứng minh phần đảo: Chứng minh với mọi điểm O thuộc nửa đường tròn đường kính AB ta đều có hình thoi ABCD thỏa mãn đề bài.

+ Lấy điểm O thuộc nửa đường tròn đường kính AB

+ Lấy C đối xứng với A qua O

+ Lấy D đối xứng với B qua O.

Tứ giác ABCD có AC cắt BD tại O là trung điểm mỗi đường

⇒ ABCD là hình bình hành.

Mà O thuộc nửa đường tròn đường kính AB

⇒ Giải bài 45 trang 86 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ AC ⊥ DB

⇒ Hình bình hành ABCD là hình thoi.

Kết luận: Quỹ tích điểm O là nửa đường tròn đường kính AB (khác A và B)

Kiến thức áp dụng

+ Thông thường, bài toán quỹ tích ta làm theo các bước:

   1, Dự đoán quỹ tích

   2, Chứng minh quỹ tích: gồm Phần thuận và Phần đảo

   3, Kết luận.

+ Quỹ tích các điểm nhìn đoạn thẳng AB cho trước dưới một góc vuông là đường tròn đường kính AB.

27 tháng 1 2018

Giải bài 45 trang 86 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dự đoán: Quỹ tích cần tìm là nửa đường tròn đường kính AB.

Chứng minh phần thuận:

ABCD là hình thoi

⇒ AC ⊥ BD ( hình thoi có 2 đường chéo vuông góc với nhau)

⇒ Giải bài 45 trang 86 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy quỹ tích của O là nửa đường tròn đường kính AB.

Chứng minh phần đảo: Chứng minh với mọi điểm O thuộc nửa đường tròn đường kính AB ta đều có hình thoi ABCD thỏa mãn đề bài.

QUẢNG CÁO

+ Lấy điểm O thuộc nửa đường tròn đường kính AB

+ Lấy C đối xứng với A qua O

+ Lấy D đối xứng với B qua O.

Tứ giác ABCD có AC cắt BD tại O là trung điểm mỗi đường

⇒ ABCD là hình bình hành.

Mà O thuộc nửa đường tròn đường kính AB

⇒ Giải bài 45 trang 86 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ AC ⊥ DB

⇒ Hình bình hành ABCD là hình thoi.

Kết luận: Quỹ tích điểm O là nửa đường tròn đường kính AB (khác A và B)

31 tháng 10 2020

a) Phần thuận

     Gọi O là điểm đối xứng với D qua C thì O là một điểm cố định

Tứ giác ABOC có AB // OC; AB = OC (vì cùng bằng CD) nên ABOC là hình bình hành 

⟹ OB = AC = 2cm. Điểm B cách điểm O cố định một khoảng 2cm nên điểm B nằm trên đường tròn tâm O bán kính 2cm.

Giới hạn: Vì B, C, D không thẳng hàng nên B nằm trên đường tròn tâm O bán kính 2cm trừ giao điểm của đường tròn này với đường thẳng CD.

b) Phần đảo

     Lấy điểm B bất kì trên đường tròn tâm O bán kính 2cm (trừ giao điểm của đường tròn này với đường thẳng CD). Suy ra OB = 2cm. Vẽ hình bình hành ABCD. Ta chứng minh hình bình hành có AC = 2cm

Thật vậy, AB // CD và AB = CD ⟹ AB // CO và AB = CO. Do đó tứ giác ABOC là hình bình hành, suy ra AC = OB = 2cm

c) Kết luận

Vậy quỹ tích của điểm B là đường tròn tâm O bán kính 2cm, trừ giao điểm của đường tròn này với đường thẳng CD.

DD
22 tháng 1 2021

Tam giác \(ABO\)vuông tại \(O\). Do đó điểm \(O\)luôn thuộc đường tròn đường kính \(AB\)(trừ 2 điểm \(A\)và \(B\)).

A B C D O

Ta đã biết rằng hai đường chéo hình thoi vuông góc với nhau, vậy điểm O nhìn AB cố định dưới góc 90o.

Quỹ tích điểm O là nửa đường tròn đường kính AB

17 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi K là trung điểm của cạnh AD.

ta có AD cố định nên điểm K cố định.

Trong ∆ ABD ta có:

IB = ID (tính chất hình bình hành)

KA = KD (theo cách vẽ)

nên KI là đường trung bình của  ∆ ABD

⇒ KI = 1/2 AB = 1/2.2 = 1 (cm) (tính chất đường trung bình của tam giác)

B và C thay đổi thì I thay đổi luôn cách điểm K cố định một khoảng không đổi nên I chuyển động trên (K; 1 cm)

28 tháng 1 2018

Gọi K là trung điểm của cạnh AD.

ta có AD cố định nên điểm K cố định.

Trong ∆ ABD ta có:

IB = ID (tính chất hình bình hành)

KA = KD (theo cách vẽ)

nên KI là đường trung bình của ∆ ABD

⇒ KI = \(\dfrac{1}{2}AB=\dfrac{1}{2}.2\) = 1 (cm) (tính chất đường trung bình của tam giác)

B và C thay đổi thì I thay đổi luôn cách điểm K cố định một khoảng không đổi nên I chuyển động trên (K ; 1 cm)