K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Câu hỏi của Phạm Hữu Nam - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo link trên!

4 tháng 7 2019

Ta có:

 \(a_k=\frac{3k^2+3k+1}{\left(k^2+k\right)^3}=\frac{k^3+3k^2+3k+1-k^3}{k^3\left(k+1\right)^3}=\frac{\left(k+1\right)^3-k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)

=> \(a_1=\frac{1}{1^3}-\frac{1}{2^3}\)\(a_2=\frac{1}{2^3}-\frac{1}{3^3}\)\(a_3=\frac{1}{3^3}-\frac{1}{4^3}\); ....; \(a_9=\frac{1}{9^3}-\frac{1}{10^3}\)

=> \(1+a_1+a_2+...+a_9=1+1-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{3^3}-\frac{1}{4^3}+...+\frac{1}{9^3}-\frac{1}{10^3}\)

\(2-\frac{1}{10^3}=\frac{1999}{1000}\)

Chị quản lí giúp em bài này nữa ạ

1 Cho tam giác ABC cân tại A . Trên cạnh AC lấy điểm D sao cho góc ABD=45 độ - \(\frac{gócBAC}{4}\) VẼ DE // CB(E thuộc AB).Chứng minh

a)Tứ giác BEDC là hình thang cân

b) EB=ED

c) CE là phân giác góc C

4 tháng 1 2019

ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1

4 tháng 1 2019

\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)

\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)

\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm ) 

...