làm hộ mình câu 22 23 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A+2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\cdot3+...+2^{99}\cdot3\)
\(=6\left(1+...+2^{99}\right)⋮6\)
Số 12*5120 chia hết cho 21 và 24
=> Số 12*5120 chia hết cho 56 và 9
=> Số 12*5120 = 1275120
Cho A = 1 + 2 + 22 + 23 + 24 +…299 Chứng minh rằng: A chia hết cho 3
Ghi cách làm và đáp án giúp mình
\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)
Lời giải:
$22+23-25+27-29+31-33$
$=22+(23-25)+(27-29)+(31-33)$
$=22+(-2)+(-2)+(-2)=22+(-2).3=22-6=16$
17 + 18 = 35
18 + 19 = 37
19 + 20 = 39
20 + 21 = 41
21 + 22 = 43
22 + 23 = 45
23 + 24 = 47
1-2-3+4+5-6-7+8+...+21-22-23+24
= ( 1-2-3 + 4) + ( 5-6-7+8)+...+(21 -22- 23 +24)
= 0+0 +....+0
= 0
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + . . . + 21 - 22 - 23 + 24
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + . . . + ( 21 - 22 - 23 + 24 )
= 0 + 0 + . . . + 0
= 0
Câu 22:
TXĐ: $(-\infty;0]\cup [2;+\infty)$
BPT \(\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-2x\leq (x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x\geq \frac{-1}{4}\end{matrix}\right.\Leftrightarrow x\geq \frac{-1}{4}\)
Kết hợp ĐKXĐ suy ra BPT có nghiệm $[\frac{-1}{4};0]\cup [2;+\infty)$
Câu 23:
Theo công thức trung tuyến:
$CM^2=\frac{BC^2+AC^2}{2}-\frac{AB^2}{4}=\frac{23}{2}$
Áp dụng công thức Herong cho tam giác $ABC$:
$S_{ABC}=\sqrt{\frac{9}{2}(\frac{9}{2}-2)(\frac{9}{2}-3)(\frac{9}{2}-4)}=\frac{3\sqrt{15}}{4}$
$S_{BCM}=\frac{1}{2}S_{ABC}=\frac{3\sqrt{15}}{8}$
Áp dụng công thức: $S=\frac{abc}{4R}$ cho tam giác $BCM$ thì bán kính đường tròn ngoại tiếp tam giác là:
$R=\frac{BC.CM.BM}{4S_{BCM}}=\frac{4.\sqrt{\frac{23}{2}}.1}{\frac{3\sqrt{15}}{2}}=\frac{4\sqrt{690}}{45}$