Biến đổi biểu thức sau thành phân thức
\(\frac{1-\frac{2y}{x}+\frac{y^2}{x^2}}{\frac{1}{x}-\frac{1}{y}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{7x-14y}{x^2-4y^2}=\frac{7\left(x-2y\right)}{x^2-\left(2y\right)^2}=\frac{7\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{7}{x+2y}.\)
b/ \(\frac{1-\frac{2y}{x}+\frac{y^2}{x^2}}{\frac{1}{x}-\frac{1}{y}}=\frac{\frac{x^2-2xy+y^2}{x^2}}{\frac{y-x}{xy}}=\frac{\left(x-y\right)^2}{x^2}.\frac{xy}{-\left(x-y\right)}=-\frac{y\left(x-y\right)}{x}=\frac{y\left(y-x\right)}{x}\)
\(\frac{x+\frac{1}{y}}{y+\frac{1}{x}}=\frac{\frac{xy}{y}}{\frac{xy}{x}}=\frac{xy}{y}.\frac{x}{xy}=\frac{x}{y}\)
\(\frac{x+\frac{1}{y}}{y+\frac{1}{x}}=\left(x+\frac{1}{y}\right):\left(y+\frac{1}{x}\right)=\frac{xy+1}{y}:\frac{xy+1}{x}=\frac{\left(xy+1\right)\cdot x}{\left(xy+1\right)\cdot y}=\frac{x}{y}\).
Mình làm mẫu cho 1 câu nha !
a, ĐKXĐ : x khác -3 ; -1 ; 2
Biểu thức = 2/x-2 - 2/(x+1).(x-2) . (1+x) = 2/x-2 - 2/x-2 = 0
=> Với điều kiện xác định thì giá trị biểu thức ko phụ thuộc vào biến
k mk nha
Ta có: \(\frac{3xy-3x+2y-2}{y-1}-\frac{9x^2-1}{3x-1}\)
\(=\frac{3x\left(y-1\right)+2\left(y-1\right)}{y-1}-\frac{\left(3x-1\right)\left(3x+1\right)}{3x-1}\)
\(=3x+2-3x+1\)
\(=1\)
Vậy biểu thức sau ko phụ thuộc vào gt của biến.