K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHD vuông tại H và ΔDCB vuông tại C có 

\(\widehat{ADH}=\widehat{DBC}\)(So le trong, AD//BC)

Do đó: ΔAHD\(\sim\)ΔDCB(g-g)

31 tháng 3 2021

b) Xét tam giác AHB và tam giác BCD có:

^AHB=^C (=90)

^ABD=^BDC( 2 góc so le trong)

=>Tam giác AHB đồng dạng tam giác BCD(g-g)

=>\(\dfrac{AH}{BC}=\dfrac{BH}{CD}\)

=>AH.CD=BC.BH

30 tháng 4 2019

Ai giúp em với em cần rất gấp

o l m . v n

tam giác AHB và tam giác BCD có :

góc AHB = góc BCD = 90

ABCD là hình chữ nhật => AB // DC => góc ABD = góc BDC (slt)

=> tam giác AHB ~ tam giác BCD (g - g)

30 tháng 4 2019

B và c bạn

29 tháng 4 2019

tam giác AHB và tam giác BCD có :

góc AHB = góc BCD = 90

ABCD là hình chữ nhật => AB // DC => góc ABD = góc BDC (slt)

=> tam giác AHB ~ tam giác BCD

18 tháng 3 2022

Mở ảnh

18 tháng 3 2022

Xin lỗi mình giải hơi trễ 

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=12^2+5^2=169\)

=>\(BD=\sqrt{169}=13\left(cm\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=12\cdot5=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: Xét ΔBCD có CE là phân giác

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)

Xét ΔHAB vuông tại H và ΔADB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔADB

=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)

=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)

=>\(EB\cdot HB=HA\cdot ED\)

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB\(\sim\)ΔBCD(cmt)

nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)

hay \(AH\cdot ED=HB\cdot EB\)(đpcm)

5 tháng 3 2023

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

góc ABH = góc BDC(hai góc so le trong, AB//DC)

góc BCD = góc AHB(hai góc vuông)

Do đó: ΔAHBΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}\)=\(\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB∼∼ΔBCD(cmt)

nên\(\dfrac{AH}{BC}\)=\(\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay\(\dfrac{AH}{BH}\)=\(\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{BH}\)=\(\dfrac{EB}{ED}\)

hay AH⋅ED=HB⋅EB(đpcm)