cho \(\frac{x}{2}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)tìm giá trị của biểu thức A=\(\frac{x-y+z}{x+2y-z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị của biểu thức A = \(\frac{x-y+z}{x+2y-z}\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}\)
\(\Rightarrow A=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{4k}{\left(2+10-7\right)k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
+ \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{x-y+z}{2-5+7}=\frac{x-y+x}{4}\Rightarrow x-y+x=2x\)
+ \(\frac{x}{2}=\frac{2y}{10}=\frac{z}{7}=\frac{x+2y-z}{2+10-7}=\frac{x+2y-z}{5}\Rightarrow x+2y-z=\frac{5x}{2}\)
\(\Rightarrow\frac{x-y+z}{x+2y-z}=\frac{2x.2}{5x}=\frac{4}{5}\)
Ta có \(\frac{x}{5}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau tao có
\(\frac{x}{5}=\frac{y}{5}=\frac{z}{7}=\frac{x-y+z}{5-5+7}=\frac{x-y+z}{7}\left(1\right)\)
\(\frac{x}{5}=\frac{2y}{10}=\frac{z}{7}=\frac{x+2y-z}{5+10-7}=\frac{x+2y-z}{8}\left(2\right)\)
Từ (1) và (2) ta được \(\frac{x-y+z}{7}=\frac{x+2y-z}{8}\Rightarrow\frac{x-y+z}{x+2y-z}=\frac{7}{8}\)
Vậy A= \(\frac{7}{8}\)
Study Well !
đợi mk đi có việc đã , xong sẽ quay lại giải giùm bn nghe Lê Trần Hoàng Oanh
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
đặt x=2k ,y=5k, z=7k
=>A=2k-5k+7k/2k+10k-7k
=(2-5+7)k/(2+10-7)k
=4k/5k =4/5
Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)
\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :
\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :
\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)
\(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)
\(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
Tương tự , chứng minh đc :
\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)
\(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)
\(\ge1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1
Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k;y=5k;z=7k\)
Theo đề ta có:
\(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}\)
\(A=\frac{\left(2-5+7\right)k}{2k+10k-7k}=\frac{\left(2-5+7\right)k}{\left(2+10-7\right)k}\)
\(A=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Đặt : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=7k\end{cases}}\)
Thay vào \(\frac{x-y+z}{x+2y-z}\)ta có :
\(A=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{\left(2-5+7\right)k}{2k+10k-7k}=\frac{4k}{\left(2+10-7\right)k}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)