tìm x,y biết x.y+12=x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Ta có:
xy + 12 = x + y
<=>x - xy + y - 1 = 12-1
<=> x ( 1-y ) - ( 1 - y ) = 11
<=> ( x - 1 ) ( 1 - y ) = 11
Vì x;y nguyên nên x - 1 và 1 - y nguyên => 11 chia hết x - 1 => x - 1 thuộc Ư(11) = { 1; 11; -1; -11 }
ta có bảng:
x-1 | 1 | 11 | -1 | -11 |
x | 2 | 12 | 0 | -10 |
1-y | 11 | 1 | -11 | -1 |
y | -10 | 0 | 12 | 2 |
Vậy ( x ; y ) \(\in\){ ( 2; -10) ; (12; 0 ) ; (0; 12) ; (-10; 2)}
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
Từ giả thiết (gt) => \(\frac{x+y}{5}=\frac{x-y}{1}=\frac{x.y}{12}\) .Áp dụng tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{x+y}{5}=\frac{x-y}{1}=\frac{x.y}{12}=\frac{x+y+x-y}{5+1}=\frac{2x}{6}=\frac{4x}{12}\Rightarrow4x=12\Leftrightarrow y=2\)
Khi đó: \(\frac{x+4}{5}=\frac{4x}{12}=\frac{x}{3}\Rightarrow3.\left(x+4\right)=5x\Leftrightarrow2x=12\Leftrightarrow x=6\)
Vậy \(\left(x,y\right)=\left(6,4\right)\)
\(\frac{15}{x-9}=\frac{12}{y-12}=\frac{40}{z-24}\)
=> \(\frac{x-9}{15}=\frac{y-12}{12}=\frac{z-24}{40}\)
Đặt \(\frac{x-9}{15}=\frac{y-12}{12}=\frac{z-24}{40}=k\Rightarrow\hept{\begin{cases}x-9=15k\\y-12=12k\\z-24=40k\end{cases}}\)
=> \(\hept{\begin{cases}x=15k+9\\y=12k+12\\z=40k+24\end{cases}}\)
Mà xy = 200
=> \(\left(15k+9\right)\left(12k+12\right)=200\)
=> 15(12k + 12) + 9(12k + 12) = 200
=> 180k + 180 + 108k + 108 = 200
=> 288k + 216 = 200
=> 288k = -16
Đề của bạn chắc chắn đúng chứ , mình thấy sai rồi đấy :v
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
1) \(\left(x-4\right)\left(y+1\right)=8\)
Do \(y\)là số tự nhiên nên \(y+1\ge1\)nên
ta có bảng giá trị:
x-4 | 1 | 2 | 4 | 8 |
y+1 | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
y | 7 | 3 | 1 | 0 |
2) \(\left(2x+3\right)\left(y-2\right)=15\)
Có \(x\)là số tự nhiên nên \(2x+3\ge3\). Ta xét bảng giá trị:
2x+3 | 3 | 5 | 15 |
y-2 | 5 | 3 | 1 |
x | 0 | 1 | 6 |
y | 7 | 9 | 3 |
3) \(xy+2x+y=12\)
\(\Leftrightarrow x\left(y+2\right)+y+2=14\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=14\)
Tiếp tục bạn làm tương tự 1) và 2).
4) \(xy-x-3y=4\)
\(\Leftrightarrow y\left(x-3\right)-x+3=7\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=7\)
Tiếp tục bạn làm tương tự 1) và 2).