Cho tam giác ABC vuông tại A có AB = 1cm, AC = 3cm. Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.
a) Tính độ dài BD.
b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.
c) Tính \(\widehat{DEB}+\widehat{DCB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=3/5
=>DE=6cm
b: Xét ΔADE và ΔCGE có
góc AED=góc CEG
góc EAD=góc ECG
=>ΔADE đồng dạng với ΔCGE
c: Xét tứ giác DBCG có
DG//BC
DB//CG
=>DBCG là hình bình hành
=>DB=CG
a: Xét ΔABC có DE//BC
nên AD/AB=DE/BC
=>DE/10=3/5
hay DE=6(cm)
b: Xét ΔADE và ΔCGE có
\(\widehat{ADE}=\widehat{CGE}\)
\(\widehat{AED}=\widehat{CEG}\)
Do đó: ΔADE\(\sim\)ΔCGE
Suy ra: AD/CG=AE/CE
hay \(AD\cdot CE=AE\cdot CG\)
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
Ta thấy :
AD=DE=EC =\(\frac{1}{3}AC=1\left(cm\right)\)
Xét tam giác ABC vuông tại A :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{1+1}=\sqrt{2}\)
b)
Xét:\(\frac{BD}{DE}=\frac{\sqrt{2}}{1}=\sqrt{2}\)
\(\frac{DC}{BD}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\frac{BD}{DE}=\frac{DC}{DB}\)
Xét tam giác BDE và tam giác CDB có
BDC chung
\(\frac{BD}{DE}=\frac{DC}{DB}\)(CMT)
tam giác BDE đồng dạng với tam giác CDB
\(\widehat{DBE}=\widehat{BCD}\)
\(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{DEB}+\widehat{DBE}=\widehat{ADB}\)
mà tam giác ABD vuông tại A có AB=AD=1 (cm)
nên tam giác ABD vuông cân nên ADB=ABD=45 độ
hay \(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{ADB}=45^0\)
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
=>AE/4=1/3
hay AE=4/3(cm)
b: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
hay \(AD\cdot AC=AE\cdot AB\)
HINH TU VE NHA
a)XÉT TAM GIÁC ABC VUÔNG TẠI A CÓ:
BC2=AB2+AC2( ĐỊNH LÝ PY - TA -GO)
THẤY SỢ : AB= 3CM, AC=4 CM ĐƯỢC
BC2=32+42
BC2=9+16
BC2=25
=> BC=5 CM
b) Vi AB=AD(GT)
=> TAM GIAC ABD CAN TAI A( DN TAM GIAC CAN)
MÌNH SẼ TRẢ LỜI 2 CÂU SAU
NHUNG KIK CHO M CAU NAY DA
c) XÉT TAM GIÁC ABC VÀ TAM GIÁC ADE CÓ:
AB=AD( GT)
GÓC BẮC = GÓC DAE( 2 GÓC ĐỐI ĐỈNH)
BA=AE( GT)
=> TAM GIÁC ABE = TAM GIÁC ADE( C-G-C)
=> DE=BC( 2 canh tuong ung)
NHO KIK MINH NHA
b) Ta có: AD+DC=AC(D nằm giữa A và C)
nên DC=AC-AD=3-1=2(cm)
Ta có: DE=AD(gt)
mà AD=1cm(cmt)
nên DE=1cm
Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)
Xét ΔBDE và ΔCDB có
\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)
\(\widehat{BDE}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)
a) Ta có: AD+DE+EC=AC
mà AD=DE=EC(gt)
nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=1+1=2\)
hay \(BD=\sqrt{2}cm\)
Vậy: \(BD=\sqrt{2}cm\)