Cho tam giác đều ABC nội tiếp (I , R). Gọi M là điểm di động trên cung nhỏ BC, D là giao điểm của AM và BC.
a/ Chứng minh rằng : MA = MB + MC và .
b/ Tìm vị trí của M để nhỏ nhất. CMR : Khi đó, SABMC lớn nhất.
c/ Gọi (I1 , R1), (I2 , R2), (I , R3) lần lượt là các đường tròn nội tiếp của các tam giác ABD, ACD, ABC. Tìm vị trí của M để R1 + R2 lớn nhất.
a) Xét hai tam giác : \(\Delta MCD\) và \(\Delta MAB\)có :
\(\widehat{DMC}=\widehat{ABD}\)(Vì \(\widehat{DMC}=\frac{1}{2}\text{sđ cung AC}\), \(\widehat{AMB}=\text{sđ cung AB}\), sđ cung AB = sđ cung AC)
\(\widehat{BAM}=\widehat{BCM}=\widehat{DCM}=\frac{1}{2}\text{sđ cung BM}\)
\(\Rightarrow\Delta MCD~\Delta MAB\left(g.g\right)\)\(\Rightarrow\frac{MC}{MA}=\frac{CD}{AB}\)(2)
Tương tự, ta cũng chứng minh được \(\Delta MBD~\Delta MAC\left(g.g\right)\)
\(\Rightarrow\frac{MB}{MA}=\frac{BD}{AC}\)hay \(\frac{MB}{MA}=\frac{BD}{AB}\)(1)
Cộng (1) và (2) theo vế : \(\frac{MC}{MA}+\frac{MB}{MA}=\frac{CD}{AB}+\frac{BD}{AB}\Leftrightarrow\frac{MB+MC}{MA}=\frac{AB}{AB}=1\Leftrightarrow MB+MC=MA\)(đpcm)
a) Xét hai tam giác : \(\Delta MCD\) và \(\Delta MAB\)có :
\(\widehat{DMC}=\widehat{ABD}\)(Vì \(\widehat{DMC}=\frac{1}{2}\text{sđ cung AC}\), \(\widehat{AMB}=\frac{1}{2}\text{sđ cung AB}\), sđ cung AB = sđ cung AC)
\(\widehat{BAM}=\widehat{BCM}=\widehat{DCM}=\frac{1}{2}\text{sđ cung BM}\)
\(\Rightarrow\Delta MCD~\Delta MAB\left(g.g\right)\)\(\Rightarrow\frac{MC}{MA}=\frac{CD}{AB}\)(1)
Tương tự, ta cũng chứng minh được \(\Delta MBD~\Delta MAC\left(g.g\right)\)
\(\Rightarrow\frac{MB}{MA}=\frac{BD}{AC}\)hay \(\frac{MB}{MA}=\frac{BD}{AB}\)(2)
Cộng (1) và (2) theo vế : \(\frac{MC}{MA}+\frac{MB}{MA}=\frac{CD}{AB}+\frac{BD}{AB}\Leftrightarrow\frac{MB+MC}{MA}=\frac{AB}{AB}=1\Leftrightarrow MB+MC=MA\)(đpcm)