K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

A B C M I

a) Xét hai tam giác : \(\Delta MCD\) và \(\Delta MAB\)có :  

\(\widehat{DMC}=\widehat{ABD}\)(Vì \(\widehat{DMC}=\frac{1}{2}\text{sđ cung AC}\)\(\widehat{AMB}=\text{sđ cung AB}\), sđ cung AB = sđ cung AC)

\(\widehat{BAM}=\widehat{BCM}=\widehat{DCM}=\frac{1}{2}\text{sđ cung BM}\) 

\(\Rightarrow\Delta MCD~\Delta MAB\left(g.g\right)\)\(\Rightarrow\frac{MC}{MA}=\frac{CD}{AB}\)(2)

Tương tự, ta cũng chứng minh được \(\Delta MBD~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{MB}{MA}=\frac{BD}{AC}\)hay \(\frac{MB}{MA}=\frac{BD}{AB}\)(1)

Cộng (1) và (2) theo vế : \(\frac{MC}{MA}+\frac{MB}{MA}=\frac{CD}{AB}+\frac{BD}{AB}\Leftrightarrow\frac{MB+MC}{MA}=\frac{AB}{AB}=1\Leftrightarrow MB+MC=MA\)(đpcm)

10 tháng 8 2016

a) Xét hai tam giác : \(\Delta MCD\) và \(\Delta MAB\)có :  

\(\widehat{DMC}=\widehat{ABD}\)(Vì \(\widehat{DMC}=\frac{1}{2}\text{sđ cung AC}\)\(\widehat{AMB}=\frac{1}{2}\text{sđ cung AB}\), sđ cung AB = sđ cung AC)

\(\widehat{BAM}=\widehat{BCM}=\widehat{DCM}=\frac{1}{2}\text{sđ cung BM}\)

\(\Rightarrow\Delta MCD~\Delta MAB\left(g.g\right)\)\(\Rightarrow\frac{MC}{MA}=\frac{CD}{AB}\)(1)

Tương tự, ta cũng chứng minh được \(\Delta MBD~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{MB}{MA}=\frac{BD}{AC}\)hay \(\frac{MB}{MA}=\frac{BD}{AB}\)(2)

Cộng (1) và (2) theo vế : \(\frac{MC}{MA}+\frac{MB}{MA}=\frac{CD}{AB}+\frac{BD}{AB}\Leftrightarrow\frac{MB+MC}{MA}=\frac{AB}{AB}=1\Leftrightarrow MB+MC=MA\)(đpcm)

24 tháng 2 2019

A B C M D E

a) Xét \(\Delta MBD\)và \(\Delta MAC\)

có: \(\widehat{MAC}=\widehat{MBD}\)( cùng chắn cung MC)

\(\widehat{BMD}=\widehat{AMC}\)( cung AB=cung AC vì AB=AC)

=>  \(\Delta MBD\)\(\Delta MAC\)

b) Từ câu a)_

=> \(\frac{MB}{MA}=\frac{BD}{AC}\)(1)

\(\frac{MC}{MA}=\frac{MD}{MB}\)(2)

Dễ dàng chứng minh đc:

\(\Delta BDM~\Delta ADC\)

=> \(\frac{MD}{MB}=\frac{DC}{AC}\)(3)

Từ (1), (2), (3)

=> \(\frac{MB}{MA}+\frac{MC}{MA}=\frac{BD}{AC}+\frac{CD}{AC}=\frac{BC}{AC}\)\(=\frac{BC}{AB}\)

c) Lấy điểm E thuộc đoạn

20 tháng 2 2020

A B C D O M

Xét \(\Delta MBD\)cân tại M có : 

\(\widehat{BDM}=60^0\)

\(\Rightarrow\Delta MBD\)là tam giác đều 

\(\Rightarrow\widehat{BDM}=60^0\)

\(\Rightarrow\widehat{BDA}=120^0\)

\(\Rightarrow\)Khi M di chuyển trên cung nhỏ BC thì M di chuyển trên cung tròn ( nằm trên nửa mặt phẳng bờ AB chưa điểm M ) nhìn AB một góc bằng \(120^0\)

Xét \(\Delta DBA\)và \(\Delta MBC\)có :
\(BA=BC\)( vì tam giác ABC đều )

\(\widehat{BAD}=\widehat{BCM}\)( cùng chắn cung BM )
\(\widehat{ABD}=\widehat{CBM}\left(=60^0-\widehat{DBC}\right)\)

Suy ra \(\Delta DBA=\Delta MBC\)

\(\Rightarrow MC=DA\)

\(\Rightarrow MA+MB+MC=MA+MD+DA=2MA\)

\(MA+MB+MC\)lớn nhất khi MA lớn nhất 

\(\Rightarrow AM\)là đường kính của \(\left(O\right)\)

\(\Rightarrow M\)là điểm chính giữa của cung BC

Chúc bạn học tốt !!!

28 tháng 3 2015

a,xét tam giác DMB và DCA có:

góc BDM=ADC

góc BMD=ACD(góc nt cug chắn cug AB)

=>2 tam giác này đồng dạng vs nhau

28 tháng 3 2015

a, xé tam giác MBD cà MAC có:

góc MBD=MAC( góc nt cug chắn cung MC)

góc BMA=AMC(chắn 2 cug bằng nhau)

=>2 tam giác này đồng dạng vs nhau

1 tháng 6 2019

a ) Ta có BM=MD (gt)

=> ΔΔMBD cân tại M

Mặt khác AMBˆ=ACBˆAMB^=ACB^ ( Hai góc nội tiếp chắn cung AB)

Mà ACBˆ=600ACB^=600( tam giác ABC đều)

Suy ra AMBˆ=600hayDMBˆ=600AMB^=600hayDMB^=600

Vậy ΔMBDΔMBD đều

b) Ta có ΔMBDΔMBD đều ( CMT)

Suy ra : DMBˆ=DBCˆ+CBMˆ=600DMB^=DBC^+CBM^=600(1)

Lại có : tam giác ABC đều (gt)

Suy ra : ABCˆ=ABDˆ+DBCˆ=600ABC^=ABD^+DBC^=600(2)

Từ (1) và (2) suy ra ABDˆ=MBCˆABD^=MBC^

Xét hai tam giác ABD và CBM ta có

BC=BA (gt)

ABDˆ=MBCˆ(cmt)ABD^=MBC^(cmt)

BD=BM( tam giác MBD đều)

=> ΔABD=ΔCBM(c.g.c)ΔABD=ΔCBM(c.g.c)

c)ΔABD=ΔCBM(cmt)ΔABD=ΔCBM(cmt)

SUy ra AD=CM

mà AM=AD+DM

SUy ra MA=MC+MD

23 tháng 1 2020

cho mihf hỏi tam giác gì nội tiếp đường tròn O vậy

23 tháng 1 2020

mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi

lời giải :

A B C O M D

a) vì MD = MB nên \(\Delta MBD\)cân tại M

\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )

\(\Rightarrow\)\(\Delta MBD\)đều

b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :

MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )

\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD

c) Mà MB = MD ( câu a )

nên MC + MB = MD + AD = MA

d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)

\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )

Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC