K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

 ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

21 tháng 9 2015

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

21 tháng 9 2015

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

27 tháng 6 2017

+ ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = dư 1 (chia cho 3) và b^2 = dư 1(chia cho 3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = dư 2 ( chia 3) nhưng c^2 = dư 1 (chia 3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = dư 1(chia 4) và b^2 = dư 1(chia 4) => a^2 + b^2 = dư 2(chia 4) nhưng c^2 = dư 1 ( chia 4) => mâu thuẫn
vậy có ít nhất 1 số chia hết cho 4
+ tương tự a^2 = 1 dư 1 (chia 5) hoạc a^2 = dư -1 (chia 5) hoạc a^2= dư 4 (chia 5) ;
và -1 + 1 = 0 , 1 + 4 = 5 , -1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5

Ở đây không nhất thiết cứ phải mỗi số phải chia hết cho 3,4,5 ,, có thể có số vừa chia hết ch0 3,4 ; cho 4,5 hoặc cho 5,3
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60..

=> ĐPCM

13 tháng 1 2019

n thuộc N

a) TH1: n chia hết cho 3 => n.(n2+1).(n2+2) chia chết cho 3

TH2: n chia 3 dư 1 => n=3k+1=> n2+2 =(3k+1)2+2=9k2+6k+3 chia hết cho 3

TH3: n chia 3 dư 2 => n=3k+2 => n2+2=(3k+2)2+2=9k2+12k+6 chia hết cho 3

=> đpcm

20 tháng 11 2018

Ba là gì vậy chế

2, Tìm abc sao cho:

99<abc<1000

Mà abc là bội của 33

21 tháng 11 2018

Mình xin lỗi nhé.Thật ra là CMR bac chia hết cho 4.