K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 3 2021

\(\frac{n+1}{2n-1}\inℤ\Rightarrow\frac{2\left(n+1\right)}{2n-1}=\frac{2n-1+3}{2n-1}=1+\frac{3}{2n-1}\inℤ\Leftrightarrow\frac{3}{2n-1}\inℤ\)

\(\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\)

Thử lại ta được \(n\in\left\{-1,0,1,2\right\}\)thỏa mãn. 

22 tháng 1

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

27 tháng 11 2016

\(A=2n:\frac{3n+1}{3}=2n.\frac{3}{3n+1}=\frac{6n}{3n+1}=\frac{6n+2-2}{3n+1}=\frac{2\left(3n+1\right)-2}{3n+1}\)

\(=\frac{2\left(3n+1\right)}{3n+1}-\frac{2}{3n+1}=2-\frac{2}{3n+1}\)

A nguyên <=> \(\frac{2}{3n+1}\) nguyên <=> 2 chia hết cho 3n+1

<=>\(3n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

<=>\(3n\in\left\{-3;-2;0;1\right\}\)

<=>\(n\in\left\{-1;\frac{-2}{3};0;\frac{1}{3}\right\}\)

Vì n nguyên nên  \(n\in\left\{-1;0\right\}\)

27 tháng 11 2016

A=\(=\frac{2n.3}{3n+1}=\frac{2.3n+2-2}{3n+1}=2-\frac{2}{3n+1}.\) 

3n+1=+-1,+-2

n=0

a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

mà n là số nguyên

nên n thuộc {0;1;-1}

c: 2n+5/n-3 là số nguyên

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;14;-8}

16 tháng 4 2022

Mình mới học lớp 5 thôi nha

Mong bạn thông cảm

 

12 tháng 6 2022

 👌🏻

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

NV
6 tháng 1

\(A=\dfrac{3n+1}{n-2}=\dfrac{3n-6+7}{n-2}=\dfrac{3\left(n-2\right)+7}{n-2}=3+\dfrac{7}{n-2}\)

A nguyên \(\Rightarrow\dfrac{7}{n-2}\) nguyên

\(\Rightarrow n-2=Ư\left(7\right)\)

\(\Rightarrow n-2=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow n=\left\{-5;1;3;9\right\}\)

16 tháng 3 2022

\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)

Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)

Ta có bảng:

n-3-11-1111
n-82414

Vậy \(n\in\left\{-8;2;4;14\right\}\)

16 tháng 3 2022

\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)

Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)

\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)