K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

26 tháng 3 2024
Dudijdiddidijdjdjdjdj
26 tháng 3 2024

27 tháng 9 2021

Ta có nhận xét 12 ⋮3; 15⋮ 312 ⋮3; 15⋮ 3. Do đó:

a) Để A chia hết cho 3 thì x⋮ 3x⋮ 3. Vậy x có dạng: x = 3k (k∈N)(k∈N)

b) Để A không chia hết cho 3 thì x không chia hết cho 3. Vậy x có dạng: x = 3k + l hoặc

x = 3k + 2 (k∈N)(k∈N).

24 tháng 12 2021

b: \(\dfrac{A\left(x\right)}{B\left(x\right)}=\dfrac{x^4-\dfrac{1}{2}x^3+\dfrac{1}{2}x^3-\dfrac{1}{4}x^2+\dfrac{9}{4}x^2-\dfrac{9}{8}x-\dfrac{15}{8}x+\dfrac{15}{16}+a-\dfrac{1}{16}}{2x-1}\)

Để A(x) chia hết cho B(x) thì a-1/16=0

hay a=1/16

5 tháng 1 2020

a)A chia hết cho 9 khi x chia hết cho 9

  A  không chia hết cho 9 khi x không chia hết cho 9

b)B chia hết cho 5 khi x chia hết cho 5

   B  không chia hết cho 5 khi x không chia hết cho 5

5 tháng 1 2020

Bài giải

a) Ta có: A = "tự ghi"  (x thuộc N)

Mà 963 \(⋮\)9,       2493 \(⋮\)9,     351 \(⋮\)9

Suy ra x \(⋮\)9 thì A \(⋮\)9

         x không chia hết cho 9 thì A không chia hết cho 9

b) Ta có B = "tự ghi" (x thuộc N)

Mà 10 \(⋮\)5,      25 \(⋮\)5,       45 \(⋮\)5

Suy ra x \(⋮\)5 thì B \(⋮\)5

         x không chia hết cho 5 thì A không chia hết cho 5

a: M(x)=5x^4+4x^3+2x+1-5x^4+x^3+3x^2+x-1

=5x^3+3x^2+3x

b: N(x)=5x^4+4x^3+2x+1+5x^4-x^3-3x^2-x+1

=10x^4+3x^3-3x^2+x+2

`@` `\text {dnammv}`

` \text {M(x)-A(x)=B(x)}`

`-> \text {M(x)=A(x)+B(x)}`

`-> M(x)=(5x^4 + 4x^3 + 2x + 1)+(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1-5x^4 + x^3 + 3x^2 + x - 1`

`= (5x^4-5x^4)+(4x^3+x^3)+3x^2+(2x+x)+(1-1)`

`= 5x^3+3x^2+3x`

`b,`

`\text {N(x)=A(x)-B(x)}`

`N(x)=(5x^4 + 4x^3 + 2x + 1)-(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1+5x^4 - x^3 - 3x^2 - x + 1`

`= (5x^4+5x^4)+(4x^3-x^3)-3x^2+(2x-x)+(1+1)`

`= 10x^4+3x^3-3x^2+x+2`

7 tháng 12 2017

98/25

7 tháng 12 2017

Tập hợp H có số phần tử là : 

  ( 215 - 21 ) : 2 + 1 = 98 

Vậy tập hợp H có 98 phần tử

1 tháng 12 2021

\(a,A=\dfrac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}\\ A=\dfrac{7x+35}{\left(x-1\right)\left(x+5\right)}=\dfrac{7\left(x+5\right)}{\left(x-1\right)\left(x+5\right)}=\dfrac{7}{x-1}\\ b,A\in Z\\ \Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\left(tm\right)\\ b,A< 0\Leftrightarrow x-1< 0\left(7>0\right)\\ \Leftrightarrow x< 1;x\ne-5\\ c,\left|A\right|=3\Leftrightarrow\dfrac{7}{\left|x-1\right|}=3\Leftrightarrow\left|x-1\right|=\dfrac{7}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}+1=\dfrac{10}{3}\left(tm\right)\\x=-\dfrac{7}{3}+1=-\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)