Giải pt: \(x^4-30x^3+31x-30=0\)
Nhanh nhé !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30=0
(x-5)(x^3+5x^2-5x+6)=0
(x-5)(x^3+6x^2-x^2-6x+x+6)=0
(x-5)(x+6)(x^2-x+1)=0
Suy ra x-5=0 hay x+6=0 hay x^2-x+1=0
Suy ra x=5 hay x=-6 hay x^2+2x.1/2+1/4+3/4=0
Suy ra x=5 hay x=-6 hay (x+1/2)^2=3/4=0 (vô lý)
Vậy x=5 hay x=-6
Câu hỏi của trần thị anh thư - Toán lớp 8 - Học toán với OnlineMath
x4-30x2+31x-30=0
<=>x4+x-30x2+30x-30=0
<=>x(x3+1)-30(x2-x+1)=0
<=>x(x+1)(x2-x+1)-30(x2-x+1)=0
<=>(x2-x+1)(x2+x-30)=0
<=>(x2-x+1)(x2-5x+6x-30)=0
<=>(x2-x+1)[x(x-5)+6(x-5)]=0
<=>(x2-x+1)(x-5)(x+6)=0
Vì x2-x+1=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4>0 với mọi x
Do đó: <=>x-5 =0 <=> x=5
x+6=0 x=-6
Vậy phương trình có tập nghiệm là S={5;-6}
P/S: kham khảo
pt <=> (x^4+x)-(30x^2-30x+30) = 0
<=> x.(x^3+1)-30.(x^2-x+1) = 0
<=> x.(x+1).(x^2-x+1)-30.(x^2-x+1) = 0
<=> (x^2-x+1).(x^2+x-30) = 0
<=> x^2+x-30 = 0 ( vì x^2-x+1 > 0 )
<=> (x^2-5x)+(6x-30) = 0
<=> (x-5).(x+6) = 0
<=> x-5=0 hoặc x+6=0
<=> x=5 hoặc x=-6
Vậy ..............
Tk mk nha
x4-30x2+31x-30=0
x4+x) -30x2+30x-30=0
x{x3+1} -30{ x2-x+1}=0
x{x+1}{x2-x+1}-30{x2-x+1}=0
{x2-x+1}{x2+x-30}=0
x2+x-30=0 {vi x2-x+1>0}
x2+x-30x-30=0
{x+1}{x-30}=0
x4-30x2+31x-30=0
<=>x4+x-30x2+30x-30=0
<=>x(x3+1)-30(x2-x+1)=0
<=>x(x+1)(x2-x+1)-30(x2-x+1)=0
<=>(x2-x+1)(x2+x-30)=0
<=>(x2-x+1)(x2-5x+6x-30)=0
<=>(x2-x+1)[x(x-5)+6(x-5)]=0
<=>(x2-x+1)(x-5)(x+6)=0
Vì x2-x+1=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4>0 với mọi x
Do đó: <=>x-5 =0 <=> x=5
x+6=0 x=-6
Vậy phương trình có tập nghiệm là S={5;-6}
x^4-30x^2+31x-30=0
<=>x^4+x^2+1-31(x^2-x+1)=0
<=>(x^2-x+1)(x^2+x+1)-31(x^2-x+1)=0
<=>(x^2-x+1)(x^2+x-30)=0
<=>(x^2-x+1)(x^2-6x+5x-30)=0
<=>(x^2-x+1)(x-6)(x+5)=0
Ta có:x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4>0 Với mọi x
<=>(x-6)(x+5)=0
<=>x+5=0<=>x=-5
x-6=0<=>x=6
Vậy x=(5;-6)
\(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4-5x^3+5x^3-25x^2-5x+25x+6x-30=0\)
\(\Leftrightarrow\left(x^4-5x^3\right)+\left(5x^3-25x^2\right)-\left(5x^2-25x\right)+\left(6x-30\right)=0\)
\(\Leftrightarrow x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)
\(x^4-30x^2+31x-30=0\)
<=>\(x^4-30x^2+30x+x-30=0\)
<=>\(\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)
<=>\(x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
<=>\(x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
<=>\(\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
<=>\(\left(x^2-x+1\right)\left[\left(x^2+6x\right)-5\left(x+30\right)\right]=0\)
<=>\(x^2\left(-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)
<=>\(\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)
=>\(x+6=0hoặcx-5=0\) vì\(\left[x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\)
<=> x=-6 hoặc x=5
Vậy......
Mik làm trước câu b nha
Do \(\left(x-1\right)^4\ge0\)
\(\left(x-3\right)^4\ge0\)
\(6\left(x-1\right)\left(x-3\right)\ge0\)
\(\Rightarrow A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)\left(x-3\right)\ge0\)
\(MinA=0\)
ừ hi :)) thanks bạn