Chứng tỏ rằng : 1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{5}+\frac{1}{13}.3+\frac{1}{61}.3\)
\(=\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
\(\Rightarrowđpcm\)
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
Ta có :
S = \(\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\frac{1}{12}x3+\frac{1}{60}x3\)
S < \(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
=> S < \(\frac{1}{2}\)
Lời giải:
Ta có:
\(\left\{\begin{matrix} \frac{1}{13}< \frac{1}{12}\\ \frac{1}{14}< \frac{1}{12}\\ \frac{1}{15}< \frac{1}{12}\end{matrix}\right.\Rightarrow \frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{3}{12}=\frac{1}{4}(1)\)
\(\left\{\begin{matrix} \frac{1}{61}< \frac{1}{60}\\ \frac{1}{62}< \frac{1}{60}\\ \frac{1}{63}< \frac{1}{60}\end{matrix}\right.\Rightarrow \frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{3}{60}=\frac{1}{20}(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}\)
Hay \( \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
Ta có đpcm.
Đặt A là biểu thức đó
Ta có:
\(\dfrac{1}{13}< \dfrac{1}{12};\dfrac{1}{14}< \dfrac{1}{12};\dfrac{1}{15}< \dfrac{1}{12}\)
\(\Rightarrow\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}\)
Ta cũng có
\(\dfrac{1}{61}< \dfrac{1}{60};\dfrac{1}{62}< \dfrac{1}{60};\dfrac{1}{63}< \dfrac{1}{60}\)
\(\Rightarrow\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
\(\Rightarrow\)dpcm
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}<\frac{1}{12}.3=\frac{1}{4}\)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{60}.3=\frac{1}{20}\)
=>S<\(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
=>\(S<\frac{1}{20}\)(đpcm)
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{13}+\frac{1}{13}\right)+\left(\frac{1}{61}+\frac{1}{61}+\frac{1}{61}\right)\)\(\Rightarrow S<\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Ta có: \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{62}+\frac{1}{62}+\frac{1}{63}\right)\)
\(A=\frac{1}{5}+\frac{1}{15}.3+\frac{1}{63}.3\)
\(A=\frac{1}{5}+\frac{1}{5}+\frac{1}{21}\)
\(A=\frac{47}{105}\)
Mà: \(\frac{47}{105}< \frac{47}{94}=\frac{1}{2}\)
Nên \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
TA có:
1/12>1/13
1/12>1/14
1/12>1/15
=>1/12.3=1/4>1/13+1/14+1/15
1/60>1/61
1/60>1/62
1/60>1/63
=>1/60.3=1/20>1/61+1/62+1/63
=>1/5+1/4+1/20> 1/5+1/13+1/14+1/15+1/61+1/62+1/63
=>1/2> 1/5+1/13+1/14+1/15+1/61+1/62+1/63