cho phân số\(\frac{n+9}{n-6}\)(n thuộc Z,n<6). Tìm các giá trị của n để phân số có giá trị là nguyên dương.
làm ơn hộ mình nhanh lên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n=8
\(\frac{8+9}{8-6}\)\(\Leftrightarrow\)\(\frac{17}{2}\)\(\Rightarrow\)Phân số tối giản
Ta có
\(B=\frac{n+9}{n+6}=\frac{n+6+3}{n+6}=1+\frac{3}{n+6}\)
B nguyên dương khi n+6 thuộc ước nguyên dương của 3
\(n+6\in U\left(3\right)=1;3\\ TH1:n+6=1\Rightarrow n=-5\\ TH2:n+6=3\Rightarrow n=-3\)
\(\Rightarrow n\in-5;-3\)
Lời giải:
a. Để phân số đã cho có giá trị nguyên thì:
$n+9\vdots n-6$
$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$
Mà $n>6$ nên $n-6>0$
$\Rightarrow n-6\in\left\{1;3;5;15\right\}$
$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$
b.
Gọi $d=ƯCLN(n+9, n-6)$
$\Rightarrow n+9\vdots d; n-6\vdots d$
$\Rightarrow (n+9)-(n-6)\vdots d$
$\Rightarrow 15\vdots d$
Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$
Điều này xảy ra khi:
$n-6\not\vdots 3; n-6\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.
Do phân số \(\frac{n+9}{n-6}\)nguyên dương
=> n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
Do n - 6 chia hết cho n - 6 => 15 chia hết cho n - 6
Mà n > 6 => n - 6 > 0 => \(n-6=15\)
=> n = 21
Mk nghĩ chỗ điều kiện n < 6 fai sửa thành n > 6 ms đúng đó