K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

                                               \(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

                                               \(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên dương

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

21 tháng 2 2018

Ta có:   \(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

            \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c}\)

             \(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng 3 BĐT trên vế theo vế ta được:

          \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ko thể là số nguyên dương.

       

21 tháng 2 2018

\(P=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+B}.\)

\(P>\frac{\left(a+b+c\right)}{\left(a+b+c\right)}=1\)

suy ra P là số nguyên dương

+) Do a + b + c> a + b \(\Rightarrow\frac{a}{a+b}>\frac{a}{a+b+c}\)

Tương tự \(\frac{b}{b+c}>\frac{b}{a+b+c},\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

Lại có a < a + b \(\Rightarrow\frac{a}{a+b}< 1\Rightarrow\frac{a+c}{a+b+c}>\frac{a}{a+b}\)

Tương tự \(\frac{b}{b+c}< \frac{b+a}{a+b+c},\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)

Từ (1) và (2) => 1<M<2 => M không phải là số nguyên

16 tháng 12 2017

Vì a,b,c dương, ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (*)

Lại có: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a+b-b}{a+b}+\frac{b+c-c}{b+c}+\frac{c+a-a}{c+a}=3-\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)\)

Chứng minh tương tự (*) ta có: \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}>1\)

\(\Rightarrow M< 3-1=2\) (**)

Từ (*) và (**) => 1 < M < 2 => đpcm

10 tháng 3 2018

Ta có : 

Thay \(a+b+c=2016\) vào A ta có : 

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\)\(A>1\)\(\left(1\right)\)

Lại có : 

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)

Từ (1) và (2) suy ra : \(1< A< 2\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~

10 tháng 3 2018

Ta có:

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

tự làm tiếp nhé!
 

28 tháng 7 2017

à bài này dễ lắm

28 tháng 7 2017

\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Theo đề ta được:

\(\hept{\begin{cases}a< \left(b+c\right)\\b< \left(a+c\right)\\c< \left(a+b\right)\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b+c}< 0\\\frac{b}{a+c}< 0\\\frac{c}{a+b}< 0\end{cases}\Rightarrow}\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ne N}\)( Tổng của ba phân số không thể bằng 1 số tự nhiên với a,b,c không là số âm )

8 tháng 7 2016

bạn có biết BĐT này chưa ? \(\frac{a}{b}< \frac{a+n}{b+n}\)

8 tháng 7 2016

Ta có:

a/(a+b) > a/(a+b+c); b/(b+c) > b/(a+b+c); c/(c+a) > c/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(a+b+c) + c/(a+b+c) = (a+b+c)/(a+b+c) = 1

=> S > 1 (1)

Mà:

a/(a+b) < (a+b)/(a+b+c); b/(b+c) < (b+c)/(a+b+c); c/(c+a) < (c+a)/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a) < (a+b)/(a+b+c) + (b+c)/(a+b+c) + (c+a)/(a+b+c) = 2(a+b+c)/(a+b+c) = 2

=> S < 2 (2)

Từ (1) và (2) => 1 < S < 2

=> S không có g.trị nguyên.