\(5x^2-3x+6=2\sqrt{x^3+3x^2+3x+9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)
b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)
c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)
\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)
d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)
\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)
a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)
<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)
<=> \(\sqrt{x}+8=28\)
<=> \(\sqrt{x}=28-8\)
<=> \(\sqrt{x}=20\)
<=> \(\left(\sqrt{x}\right)^2=20^2\)
<=> x = 400
=> x = 400
b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)
<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)
<=> \(3\sqrt{x}+5=\sqrt{x}+12\)
<=> \(3\sqrt{x}=\sqrt{x}+12-5\)
<=> \(3\sqrt{x}=\sqrt{x}+7\)
<=> \(3\sqrt{x}-\sqrt{x}=7\)
<=> \(2\sqrt{x}=7\)
<=> \(\sqrt{x}=\frac{7}{2}\)
<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)
<=> \(x=\frac{49}{4}\)
=> \(x=\frac{49}{4}\)
c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)
<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)
<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)
<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)
<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)
<=> \(8\sqrt{x}=6\sqrt{x}+4\)
<=> \(8\sqrt{x}-6\sqrt{x}=4\)
<=> \(2\sqrt{x}=4\)
<=> \(\sqrt{x}=2\)
<=> \(\left(\sqrt{x}\right)^2=2^2\)
<=> x = 4
=> x = 4
d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)
<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)
<=>\(2\sqrt{3x}=6\sqrt{3x}\)
<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)
<=>\(-4\sqrt{3x}=0\)
<=> \(\sqrt{3x}=0\)
<=> \(\left(\sqrt{3x}\right)^2=0^2\)
<=> 3x = 0
<=> x = 0
=> x = 0
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
a,ĐK:\(x\ge\frac{3}{2}\)
\(PT\Leftrightarrow\left(3x+2\right)\sqrt{2x-3}-\left(3x+2\right)-2x^2+8=0\)
\(\Leftrightarrow\left(3x+2\right)\left(\sqrt{2x-3}-1\right)-2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(3x+2\right).\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}-2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow2\left(x-2\right)\left[\frac{3x+2}{\sqrt{2x-3}+1}-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\frac{3x+2}{\sqrt{2x-3}+1}=x+2\left(1\right)\end{matrix}\right.\)
Giải (1)\(\Leftrightarrow3x+2=\sqrt{2x-3}\left(x+2\right)+x+2\)
\(\Leftrightarrow2x=\sqrt{2x-3}\left(x+2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\4x^2=\left(2x-3\right)\left(x^2+4x+4\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\2x^3+x^2-4x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\\left(x-2\right)\left(2x^2+5x+6\right)=0\end{matrix}\right.\) \(\Leftrightarrow x=2\left(tm\right)\)
Vậy \(x=2\)
b, Đề là \(5\sqrt{x+1}\) hay \(5\sqrt{x+4}\) vậy?
ĐKXĐ: \(x\ge-3\)
\(5x^2-3x+6=\sqrt{\left(x+3\right)\left(x^2+3\right)}\)
\(\Leftrightarrow5\left(x^2+3\right)-3\left(x+3\right)=2\sqrt{\left(x+3\right)\left(x^2+3\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+3}=a>0\\\sqrt{x+3}=b\ge0\end{matrix}\right.\)
\(\Rightarrow5a^2-3b^2=2ab\)
\(\Leftrightarrow5a^2-2ab-3b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow\sqrt{x^2+3}=\sqrt{x+3}\)
\(\Leftrightarrow x^2=x\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)