Giúp mình bài này với ạ. Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn đó, vẽ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm).Trên cung nhỏ BC lấy điểm P bất kì (P khác B, P khác C).Kẻ PM vuông góc AB, PN vuông góc AC, PK vuông góc BC (M thuộc AB, N thuộc AC, K thuộc BC) a, Chứng minh tứ giác BKPM nội tiếp đường tròn. b, Chứng minh góc MKP= góc PCB. c, Gọi E, F lần lượt là giao điểm của BP và MK, CP và KN. Chứng minh EF//BC. d, Xác định vị trí điểm P trên cung nhỏ BC để (PM^2 + PN^2 + 2PK^2) đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha
Xét tam giác ABC nội tiếp ( O ) đường kính BC nên vuông tại A \(\Rightarrow AC\perp AB\) ( 1 )
Theo tính chất 2 tiếp tuyến cắt nhau \(\Rightarrow\)SA = SB và SO là tia phân giác tam giác SAB
\(\Rightarrow\)\(\Delta SAB\)cân tại S có SO là đường phân giác nên cũng là đường cao \(\Rightarrow\)\(SO\perp AB\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra SO // AC
Bạn lấy điểm E là trung điểm của OA, xong vẽ đường tròn bán kính AE cắt (O) tại B,C; nối hai đường AB,AC, ta được AB,AC là các tiếp tuyến cần vẽ
Kéo dài HO về phía O cắt (o) tại K => KH là đường kính (o). Nối CH; CK ta có
^KCH=90 (góc nội tiếp chắn nửa đường tròn)
CM=DM=CD/2=8 cm (bán kính vuông góc với dây cung thì chia đôi dây cung)
Xét tg vuông KCH có \(CM^2=MH.MK\Rightarrow8^2=4.MK\Rightarrow MK=16cm\)
\(\Rightarrow KH=MH+MK=4+16=20cm\Rightarrow OK=\frac{KH}{2}=10cm\)
- Gọi I là giao điểm của EG và HF.
- Theo định lí tiếp tuyến, ta có: $\angle{OBE} = \angle{OBF} = 90^\circ$ và $\angle{ODF} = \angle{ODG} = 90^\circ$.
- Vì $BE$ và $DF$ là tiếp tuyến của đường tròn (O), nên $OE$ và $OF$ là phân giác của $\angle{BOD}$.
- Tương tự, $OG$ và $OH$ là phân giác của $\angle{BOD}$.
- Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
- Do đó, $OEIF$ và $OFIG$ là các hình chữ nhật.
- Vì $OE = OF$ và $OG = OH$, nên $OEIF$ và $OFIG$ là các hình vuông.
- Từ đó, ta có: $BE = EF$ và $DG = GH$.
- Vì $ABCD$ là hình thoi, nên $AB = AD$ và $BC = CD$.
- Khi đó, ta có: $AB = AD = BE + EF = BE + DF$ và $BC = CD = DG + GH = EG + HF$.
- Từ đó, ta suy ra: $BE + DF = EG + HF$.
- Do đó, $BE.DF = EG.HF$.
- Từ định lí tiếp tuyến, ta có: $BE.DF = OB^2$ và $EG.HF = OG^2$.
- Vì $OB = OG$ (bán kính đường tròn (O)), nên ta có: $BE.DF = OB.OD$.
Vậy, ta đã chứng minh được a) BE.DF = OB.OD.
b) Ta có:
- Gọi I là giao điểm của EG và HF.
- Theo chứng minh ở câu a), ta có: $OEIF$ và $OFIG$ là các hình vuông.
- Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
- Do đó, ta có: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
- Từ đó, ta suy ra: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
- Vì $EG \parallel HF$, nên ta có: $\angle{EOI} + \angle{FOI} = 180^\circ$.
- Từ đó, ta suy ra: $\angle{GOI} + \angle{HOI} = 180^\circ$.
- Do đó, ta có: $\angle{GOI} = \angle{HOI}$.
- Vậy, ta đã chứng minh được b) EG // HF.
Bạn tự vẽ hình nha!
c) Các tam giác ACM và BDM cân tại C và D; CO là phân giác góc ACM; DO là phân giác góc BDM => Các đường phân giác này cũng là đường cao => CO vuông góc với AM tại E và DO vuông góc với BM tại F => g. OEM = OFM = 90o.
Mặt khác g.AMB =90o(Góc nội tiếp chắn nửa đường tròn) => Từ giác OEMF là hình chữ nhật => I là trung điểm của OM => IO = OM/2 = R/2 (Không đổi)
Do đó khi M di chuyển thì trung điểm I của EF luôn cách O một khoảng không đổi R/2 => Quỹ tích trung điểm I của EF là nửa đường tròn tâm O bán kính R/2 cùng phía với nửa đường trón tâm O đường kính AB.
a: góc BKP+góc BMP=180 độ
=>BKPM nội tiếp
b: góc MKP=góc MBP=1/2*sđ cung PB
góc PCB=1/2*sđ cung PB
=>góc MKP=góc PCB