cho O là điểm tùy ý trong tam giác abc. biết AM = 1/3 AO, BN= 1/3 BO, CP= 1/3 CO. Tính diện tích tam giác MNP biết diện tích tam giác ABC là 90 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S MON=20cm2
=>S NAM=60cm2
=>S AMC=120cm2
=>S ABC=240cm2
Cho tui tick nha
Diện tích tam giác ABN = 1/4 diện tích tam giác ABC vì có chung chiều cao nối từ A xuống N và BN = 1/4 BC
Diện tích tam giác ABN là:
64 x 1/4 = 16 (cm2 )
Diện tích tam giác BMN = 1/2 diện tích tam giác ABN vì có chung chiều cao nối từ N xuống M và BM = 1/2 BA
Diện tích tam giác BMN là:
16 x 1/2 = 8 (cm2 )
Đáp số: 8 cm2
SAMP = \(\dfrac{1}{2}\)SABP (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy AB và AM = \(\dfrac{1}{2}\)AB)
AP = AC - PC = AC - \(\dfrac{2}{3}\) AC = \(\dfrac{1}{3}\)AC
SAPB = \(\dfrac{1}{3}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AC và AP = \(\dfrac{1}{3}\) AC)
⇒ SAMP = \(\dfrac{1}{2}\times\)\(\dfrac{1}{3}\)SABC = 36 \(\times\) \(\dfrac{1}{6}\) = 6 (cm2)
SBMN = \(\dfrac{1}{2}\)SABN (vì hai tam giác có chung chiều cao hạ từ đỉnh N xuống đáy AB và BM = \(\dfrac{1}{2}\) AB)
SABN = \(\dfrac{1}{3}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BN = \(\dfrac{1}{3}\)BC)
SBMN = \(\dfrac{1}{2}\times\) \(\dfrac{1}{3}\)SABC = 36 \(\times\) \(\dfrac{1}{6}\) = 6 (cm2)
CN = BC - BN = BC - \(\dfrac{1}{3}\)BC = \(\dfrac{2}{3}\)BC
SCNP = \(\dfrac{2}{3}\)SBCP (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{2}{3}\) BC)
SBCP = \(\dfrac{2}{3}\)SABC ( vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AC và PC = \(\dfrac{2}{3}\)CA)
SCNP = \(\dfrac{2}{3}\times\dfrac{2}{3}\) = \(\dfrac{4}{9}\)\(\times\)36 = 16 (cm2)
Diện tích tam giác MNP là:
36 - (6+6+16) = 8 (cm2)
Đáp số: 8 cm2
AM=1/3AO
=>OM=2/3AO
BN=1/3BO
=>ON/OB=2/3
CP=1/3CO
=>OP/OC=2/3
Xét ΔOAC có OM/OA=OP/OC
nên MP//AC và MP/AC=OM/MA
=>ΔOMP đồng dạng với ΔOAC
=>S OMP/S OAC=(OM/OA)^2=(2/3)^2=4/9
Xét ΔOAB có OM/OA=ON/OB
nên MN//AB
=>ΔOMN đồng dạng với ΔOAB
=>S OMN/S OAB=(OM/OA)^2=(2/3)^2=4/9
Xét ΔOBC có ON/OB=OP/OC
nên NP//BC
=>ΔONP đồng dạng với ΔOBC
=>S ONP/S OBC=(ON/OB)^2=4/9
=>S MNP=4/9*S ABC=40cm2