Cho đa thức P(x) với các hệ số thỏa mãn :P(2018)=P(2019)=P(2020) = 2019 Chứng minh rằng với đa thức P( x) - 2019 không có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G/s f ( x) = 0 có nghiệm nguyên là a
Khi đó: \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)
Ta có: f ( 2017 ) . f(2018) = 2019
<=> ( 2017 - a ) . g(2017). ( 2018 - x ) . g ( 2018) = 2019
<=> ( 2017 - a ) . ( 2018 - a ) . g ( 2018) . g(2017).= 2019
Nhận xét thấy một điều rằng ( 2017 - a ) và (2018 - a ) là hai số nguyên liền nhau
=> ( 2017 - a ) . ( 2018 - a) \(⋮\)2 => VT \(⋮\)2 => 2019 \(⋮\)2 điều này vô lí
Vậy không tồn tại; hay f(x) = 0 không có nghiệm nguyên.
Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)
\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên
\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)
Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ
\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn
Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:
\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)
\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)
Nhân vế với vế:
\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn
Mà vế trái lẻ \(\Rightarrow\) vô lý
Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)
Lời giải:
Sử dụng công thức nội suy Newton:
$f(x)=a_1+a_2(x-2017)+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$ với $a_4$ nguyên dương, $a_1,a_2, a_3, t$ bất kỳ.
Ta có:
$f(2017)=a_1=2018$
$f(2018)=a_1+a_2=2019$
$\Rightarrow a_2=1$. Thay giá trị $a_1,a_2$ vào lại $f(x)$ thì:
$f(x)=x+1+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$
Do đó:
$f(2019)=2020+2a_3+2a_4(2019-a)$
$f(2016)=2017+2a_3+2a_4(2016-a)$
$\Rightarrow f(2019)-f(2016)=3+6a_4\vdots 3$ với mọi $a_4$ nguyên dương.
Cũng dễ thấy $3+6a_4>3$ với mọi $a_4$ nguyên dương
Do đó $f(2019)-f(2016)$ là hợp số (đpcm)
Nếu muốn chỉ $f(x)=0$ không có nghiệm thì chừng ấy đk không đủ để CM. Mình sửa đề thành chứng minh $f(x)=0$ không có nghiệm nguyên.
----------------------------
Giả sử $f(x)=0$ có nghiệm nguyên $x=a$. Khi đó, đặt $f(x)=(x-a)g(x)$
Ta có:
$f(2017)=(2017-a)g(2017)$
$f(2018)=(2018-a)g(2018)$
$\Rightarrow (2017-a)(2018-a)g(2017)g(2018)=f(2017)f(2018)=2019$
Với $a$ nguyên thì $(2017-a)(2018-a)$ là tích 2 số nguyên liên tiếp. Do đó $(2017-a)(2018-a)\vdots 2$
$\Rightarrow 2019\vdots 2$ (vô lý)
Do đó PT $f(x)=0$ không có nghiệm nguyên.
Bạn kiểm tra đề có vấn đề gì không nhé.
Vì ta có đa thức \(P\left(x\right)\)có hệ số nguyên thì \(\left[P\left(a\right)-P\left(b\right)\right]⋮\left(a-b\right)\).
Ta có: \(2021=1.2021=43.47\)
\(20-11=9\Rightarrow P\left(20\right)-P\left(11\right)⋮9\)
Do là đa thức có hệ số nguyên nên \(P\left(20\right),P\left(11\right)\)đều là số nguyên.
Ta thử các trường hợp của \(P\left(20\right)\)và \(P\left(11\right)\) đều không có trường hợp nào thỏa mãn \(P\left(20\right)-P\left(11\right)⋮9\).
đây là câu hỏi nâng cao chứ chắc ko sai đây ạ
mình đang cần làm cái cmr ý ạ