Cho a+b+c+d =0
chứng minh:
a^3+b^3+c^3+d^3 = 3(ac-bd)(b+d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\\ \Rightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\\ \Rightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\\ \Rightarrow\dfrac{-\left(a-b\right)}{a}=\dfrac{-\left(c-d\right)}{c}\\ \Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Ta có:\(a+b+c+d=0\)
\(a+c=-\left(b+d\right)\)
\(\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+c^3+3ac\left(a+c\right)=-\left[b^3+d^3+3bd\left(b+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\left(đpcm\right)\)
Sửa đề một chút : Cmr a3 + b3 + c3 + d3 = 3 ( ac - bd ) ( b + d )
a + b + c + d = 0
=> a + c = - ( b + d )
\(\Leftrightarrow\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-d^3-3b^2d-3bd^2\)
\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-d^3-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)( đpcm )
Ta có : \(b^2=ab\Rightarrow\frac{a}{b}=\frac{b}{c}\) ; \(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
Theo t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)
Suy ra : \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b-c}{b+c-d}\right)^3\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)( Đpcm )
từ giả thiết:
b^2=ac;c^2=bd =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
lại có:
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(2\right)\)
từ 1 và 2=>đpcm
b;c;d thoả mãn b 2 =ac; c - Giúp tôi giải toán - Hỏi đáp, thảo ... nho lik e vao do dug 10000000000000000000%
b^2=ac= >a/b=b/c ; c^3=bd= >b/c=c/d
=> a/b=b/c=c/d= >a^3/b^3=b^3/c^3=c^3/d^3=(a^3+b^3+c^3)/(b^3+c^3+d^3)
mà a^3/b^3=a/b.a/b.a/b=a/b.b/c.c/d=a/b
nên (a^3+b^3+c^3)/(b^3+c^3+d^3)=a/b