gip mình viwí ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\dfrac{1}{4}+\dfrac{15}{16}:\dfrac{3}{8}x\dfrac{2}{3}=\dfrac{1}{4}+\dfrac{5}{2}x\dfrac{2}{3}=\dfrac{1}{4}+\dfrac{5}{3}=\dfrac{23}{12}\)
b.
+ Với a=58,47, ta có:
A=4,25.(58,47+41,53)-125=300
+Với A=53,3, ta có:
53,5 = 4,25.(a+41,53)-125 =>a=0,47
bài 1 :
a) \(\dfrac{1}{4}+\dfrac{15}{16}:\dfrac{3}{8}\cdot\dfrac{2}{3}=\dfrac{1}{4}+\dfrac{5}{2}\cdot\dfrac{2}{3}=\dfrac{1}{4}+\dfrac{10}{6}=\dfrac{6}{24}+\dfrac{40}{24}=\dfrac{23}{12}\)
b)A = 4,25 X ( 58,47 + 41,53 ) - 125 = 4,25 x 100 - 125 = 425 - 125 = 300
53,5 = 4,25 x ( a + 41,53 ) - 125
4,25 x ( a + 41,53 ) = 53,5 + 125
4,25 x ( a + 41,53 ) = 178,5
a + 41,53 = 178,5 : 4,25
a + 41,53 = 42
a = 42 - 41,53
a = 0,47
a. So sánh diện tích tam giác MNK và KNP:
* Xét 2 tam giác MNK và KNP, có:
+ Ta có: KM = KP
+ Chung chiều cao hạ từ N
+ Do đó: SMNK = SKNP (1)
b. So sánh diện tích tam giác IKN và MNK:
* Xét 2 tam giác giác IKN và MNK, có:
+ Ta có: IN = MN
+ Chung chiều cao hạ từ K
+ Do đó: SIKN = SMNK (2)
c. Tính độ dài đoạn IO và OP:
- Vẽ đường cao IH và PQ.
+ Từ (1) và (2) ta có: SIKN = x SKNP = SKNP
+ Mặt khác 2 tam giác IKN và KNP chung đáy NK .
+ Do đó: IH = PQ (3)
* Xét 2 tam giác ION và ONP
+ Có ON là đáy chung và IH = PQ
Do đó: SION = SONP
+ Mặt khác 2 tam giác này lại chung chiều cao hạ từ N
+ Vậy: IO = OP hay IO = IP
IO = 24 x = 6cm
OP = 6 x 3 = 18cm
Cạnh hình vuông là : 96 : 4 = 24 (dm )
Vì dien tích hình bình hành bằng dien tích hình vuông nen diẹn tích hình bình hành là :
24 x 24 =576( dm vuông)
Cạnh dáy hình bình hành là : 576: 18= 32 (dm)
Dáp số : dien h : 576 dm vuong
canh day :32 dm
1. Vì bảo quản thực phẩm sẽ giúp cho thực phẩm luôn giữ độ tươi ngon, sạch sẽ, tránh bị ôi thiu gây ngộ độc thực phẩm.
số số hạng của dãy trên là :
( 2016 - 102 ) : 2 + 1 = 958 ( số hạng )
tổng của dãy trên là :
( 2016 + 102 ) . 958 : 2 = 1014522
Đáp số : 1014522
\(\frac{3}{x-5}=-\frac{4}{x+2}\)
\(\Rightarrow3x+6=-4x+20\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=2\)
\(\overrightarrow{AB}=\left(-1;1;-5\right)\Rightarrow AB=3\sqrt{3}\)
Do D thuộc Ox nên tọa độ có dạng: \(D\left(a;0;0\right)\)
\(\Rightarrow\overrightarrow{AD}=\left(a-5;1;-6\right)\Rightarrow AD=\sqrt{\left(a-5\right)^2+37}\)
\(\Rightarrow\sqrt{\left(a-5\right)^2+37}=6\sqrt{3}\)
\(\Rightarrow\left(a-5\right)^2=71\Rightarrow\left[{}\begin{matrix}a=5+\sqrt{71}\\a=5-\sqrt{71}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow a^2+b+c=\left(5+\sqrt{71}\right)^2+0+0=96+10\sqrt{71}\)