K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc mp, M nằm trên đường phân giác góc tạo bởi 2 đường thẳng đã cho khi và chỉ khi:

\(d\left(M;d\right)=d\left(M;k\right)\)

\(\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)

\(\Rightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)

Thế tọa độ E, F lần lượt vào 2 đường thẳng ta thấy cả 2 đều thỏa mãn (cho 2 giá trị cùng dấu dương)

Vậy đề bài sai, đáp án A và D đều đúng hết

NV
26 tháng 3 2022

16.

Hệ tọa độ giao điểm: \(\left\{{}\begin{matrix}2+t=2+3t'\\-t=3-2t'\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t=-9\\t'=-3\end{matrix}\right.\)

Thay \(t=-9\) vào pt d ta được: \(\left\{{}\begin{matrix}a=-7\\b=9\end{matrix}\right.\)

\(\Rightarrow a+b=2\)

17.

Do d qua M nên: \(\dfrac{-3}{a}+\dfrac{3}{2b}=1\) (1)

d cắt tia đối Ox tại A \(\Rightarrow a< 0\) và \(OA=-a\)

d cắt Oy tại b \(\Rightarrow b>0\) và \(OB=b\)

\(OA=2OB\Rightarrow-a=2b\)

Thế vào (1): \(\dfrac{-3}{a}+\dfrac{3}{-a}=1\Rightarrow a=-6\Rightarrow b=\dfrac{-a}{2}=3\)

\(\Rightarrow ab=-18\)

NV
26 tháng 3 2022

18.

Gọi A là giao điểm của d với Ox

\(\Rightarrow y_A=0\Rightarrow\dfrac{x_A-1}{2}=\dfrac{0+1}{-4}\Rightarrow x_A=\dfrac{1}{2}\)

\(\Rightarrow OA=\left|x_A\right|=\dfrac{1}{2}\)

Gọi B là giao điểm của d với Oy

\(\Rightarrow x_B=0\Rightarrow\dfrac{0-1}{2}=\dfrac{y_B+1}{-4}\Rightarrow y_B=1\)

\(\Rightarrow OB=\left|y_B\right|=1\)

\(S=\dfrac{1}{2}OA.OB=\dfrac{1}{4}\)

23 tháng 3 2022

Câu C bạn nhé!!

NV
23 tháng 3 2022

11. 

Đường tròn (C) tâm \(I\left(4;3\right)\) bán kính \(R=\sqrt{2}\)

\(d\left(I;\Delta\right)=\dfrac{\left|4+3-11\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)

\(\Rightarrow d\left(M;\Delta\right)_{max}=R+d\left(I;\Delta\right)=\sqrt{2}+2\sqrt{2}=3\sqrt{2}\)

NV
27 tháng 3 2022

23.

Gọi I là trung điểm MN \(\Rightarrow I\left(3;3\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(2;-1\right)\Rightarrow IN=\sqrt{5}\)

Phương trình đường tròn đường kính MN, nhận I là tâm và có bán kính \(R=IN\) là:

\(\left(x-3\right)^2+\left(y-3\right)^2=5\)

Thay tọa độ E vào pt ta được:

\(\left(x-3\right)^2+4=5\Rightarrow\left(x-3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)  \(\Rightarrow x_1x_2=8\)

Cả 4 đáp án của câu này đều sai

NV
27 tháng 3 2022

24.

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\)

Do \(\Delta\) là đường phân giác của góc tạo bởi d và k nên:

\(d\left(M;d\right)=d\left(M;k\right)\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)

- Với \(x-y+3=0\), ta có: 

\(\left(x_E-y_E+3\right)\left(x_F-y_F+3\right)=2.1=2>0\Rightarrow E;F\) nằm cùng phía so với \(x-y+3=0\) (thỏa mãn)

- Với \(x+y-1=0\) ta có:

\(\left(x_E+y_E-1\right)\left(x_F+y_F-1\right)=2.7=14>0\Rightarrow E;F\) nằm cùng phía so với \(x+y-1=0\) (thỏa mãn)

Vậy cả đáp án A và D đều đúng

Tương tự như câu 23, câu 24 đề bài tiếp tục sai

10 tháng 2 2023

Bán kính hình tròn:
\(18,84:3,14:2=3\left(cm\right)\)
Diện tích hình tròn:
\(3\times3\times3,14=28,26\left(cm^2\right)\)
Đường kính hình tròn:
\(3\times2=6\left(cm\right)\)
Diện tích hình thoi:
\(\dfrac{6\times6}{2}=18\left(cm^2\right)\)
Diện tích phần gạch chéo:
\(28,26-18=10,26\left(cm^2\right)\)

24 tháng 2 2022

Câu 27.

Cơ năng vật:

\(W=\dfrac{1}{2}mv^2+mgz=\dfrac{1}{2}\cdot5\cdot10^2+5\cdot10\cdot30=1750J\)

Câu 28.

\(m=200tấn=2\cdot10^5kg\)

\(z=12km=12000m\)

\(v=720\)km/h=200m/s

Cơ năng vật:

\(W=\dfrac{1}{2}mv^2+mgz=\dfrac{1}{2}\cdot2\cdot10^5\cdot200^2+2\cdot10^5\cdot10\cdot12000=2,8\cdot10^{10}J\)

24 tháng 2 2022

Câu 29.

a)Cơ năng vật ban đầu:

\(W=W_t=mgz=2\cdot10\cdot30=600J\)

b)Vận tốc vật khi sắp chạm đất:

\(v=\sqrt{2gh}=\sqrt{2\cdot10\cdot30}=10\sqrt{6}\)m/s

c)Tại nơi có động năng bằng thế năng.

\(W_1=W_đ+W_t=2W_t=2mgz_1\)

Bảo toàn cơ năng: \(W=W_1\)

\(\Rightarrow600=2mgz_1\)

\(\Rightarrow z_1=\dfrac{600}{2\cdot2\cdot10}=15m\)

d)Tại nơi \(W_đ=2W_t\)

Cơ năng vật: \(W_2=3W_t=3mgz_2\)

Bảo toàn cơ năng: \(W=W_2\)

\(\Rightarrow600=3mgz_2\)

\(\Rightarrow z_2=\dfrac{600}{3\cdot2\cdot10}=10m\)

24 tháng 2 2022

Câu 32.

a)Độ cao mặt phẳng nghiêng: 

   \(h=l\cdot sin\alpha=10sin30^o=5m\)

   Bảo toàn cơ năng: \(W_đ=W_t\)

   \(\Rightarrow\dfrac{1}{2}mv^2=mgh\)

   \(\Rightarrow v=\sqrt{2gh}=\sqrt{2\cdot10\cdot5}=10\)m/s

b)Chọn mốc thế năng tại chân mặt phẳng gnhieeng.

Lực ma sát:

\(F_{ms}=\mu N=\mu\cdot mgcos\alpha=0,2\cdot m\cdot10\cdot cos30^o=\sqrt{3}m\left(N\right)\)

Cơ năng vật khi ở đỉnh mặt phẳng nghiêng:

\(W_1=mgh=m\cdot10\cdot5=50m\left(J\right)\)

Cơ năng vật khi ở chân mặt phẳng nghiêng:

\(W_2=\dfrac{1}{2}mv^2\left(J\right)\)

Công lực ma sát: \(A_{ms}=F_{ms}\cdot s=\sqrt{3}m\cdot5=5\sqrt{3}m\left(J\right)\)

Bảo toàn cơ năng:

\(W_2-W_1=A_{ms}\)

\(\Rightarrow\dfrac{1}{2}mv^2-50m=5\sqrt{3}m\)

\(\Rightarrow v=10,83\)m/s

24 tháng 2 2022

Câu 31.

a)Độ cao cực đại.

Bảo toàn cơ năng: \(W=W_đ=W_t\)

\(\Rightarrow\dfrac{1}{2}mv^2=mgh_{max}\)

\(\Rightarrow h_{max}=\dfrac{v^2}{2g}=\dfrac{7^2}{2\cdot10}=2,45m\)

b)Ở độ cao thế năng gấp 4 lần động năng.

\(W_2=W_đ+W_t=5W_t=5mgz\)

Bảo toàn cơ năng: \(W=W_2\)

\(\Rightarrow\dfrac{1}{2}mv^2=5mgz\)

\(\Rightarrow\dfrac{1}{2}\cdot7^2=5\cdot10\cdot z\)

\(\Rightarrow z=0,49m\)

NV
10 tháng 4 2022

4b.

\(\dfrac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)

\(\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{3}{4}\)

\(tan\left(a+\dfrac{\pi}{3}\right)=\dfrac{tana+tan\left(\dfrac{\pi}{3}\right)}{1-tana.tan\left(\dfrac{\pi}{3}\right)}=\dfrac{-\dfrac{3}{4}+\sqrt{3}}{1-\left(-\dfrac{3}{4}\right).\sqrt{3}}=...\)

c.

\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\dfrac{5}{13}\)

\(cos\left(\dfrac{\pi}{3}-a\right)=cos\left(\dfrac{\pi}{3}\right).cosa+sin\left(\dfrac{\pi}{3}\right).sina=\dfrac{1}{2}.\dfrac{5}{13}+\left(-\dfrac{12}{13}\right).\dfrac{\sqrt{3}}{2}=...\)

5:

a: sin x=2*cosx

\(A=\dfrac{6cosx+2cosx-4\cdot8\cdot cos^3x}{cos^3x-2cosx}\)

\(=\dfrac{8-32cos^2x}{cos^2x-2}\)

b: VT=sin^4(pi/2-x)+cos^4(x+pi/2)+6*1/2*sin^22x+1/2*cos4x

=cos^4x+sin^4x+3*sin^2(2x)+1/2*(1-2*sin^2(2x))

=1-2*sin^2x*cos^2x+3*sin^2(2x)+1/2-sin^2(2x)

==3/2=VP