{ 1/2 + 1/4 + 1/8 + 1/16 } : x = 1/2 + 1/6 + 1/8 + 1/12 + ....+ 1/32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
\(b,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
Ta có :
\(\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{1}{8}=\frac{1}{4}-\frac{1}{8}\)
\(\frac{1}{16}=\frac{1}{8}-\frac{1}{16}\)
\(\frac{1}{32}=\frac{1}{16}-\frac{1}{32}\)
Thay vào ta có :
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)
\(=1-\frac{1}{32}\)
\(=\frac{31}{32}\)
\(c,\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
Ta có :
\(\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)
...................
\(\frac{1}{256}=\frac{1}{128}-\frac{1}{256}\)
Thay vào ta có :
\(=\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{128}-\frac{1}{256}\)
\(=1-\frac{1}{256}\)
\(=\frac{255}{256}\)
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
\(\dfrac{4}{5}\) : (\(\dfrac{4}{5}\) .- \(\dfrac{5}{4}\)) : (\(\dfrac{16}{25}\) - \(\dfrac{1}{5}\))
= \(\dfrac{4}{5}\) : (-1) : (\(\dfrac{16}{25}\) - \(\dfrac{5}{25}\))
= -\(\dfrac{4}{5}\) : \(\dfrac{11}{25}\)
= - \(\dfrac{4}{5}\) x \(\dfrac{25}{11}\)
= - \(\dfrac{20}{11}\)
\(\dfrac{4}{5}\): (\(\dfrac{4}{5}\).-\(\dfrac{5}{4}\)) : (\(\dfrac{16}{25}\) - \(\dfrac{1}{5}\))
=\(\dfrac{4}{5}\) x - 1: (\(\dfrac{16}{25}\) - \(\dfrac{5}{25}\))
= - \(\dfrac{4}{5}\) : \(\dfrac{11}{25}\)
= - \(\dfrac{4}{5}\) x \(\dfrac{25}{11}\)
= - \(\dfrac{20}{11}\)
\(\dfrac{11}{12}\): (\(\dfrac{7}{9}\) + - \(\dfrac{1}{3}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{5}{15}\))
= \(\dfrac{11}{12}\) : (\(\dfrac{7}{9}\) - \(\dfrac{3}{9}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{11}{12}\) : \(\dfrac{4}{9}\) - \(\dfrac{1}{3}\)
= \(\dfrac{11}{12}\) x \(\dfrac{9}{4}\) - \(\dfrac{1}{3}\)
= \(\dfrac{99}{48}\) - \(\dfrac{16}{48}\)
= \(\dfrac{83}{48}\)
a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}=\frac{6}{7}\)