K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016
\(x\)\(0\)\(2\)
\(y=\frac{1}{2}x-3\)\(-3\)\(-2\)

0 -3 2 -2 y=1/2x-3

\(x\)\(0\)\(2\)
\(y=-\frac{3}{2}x+2\)\(2\)\(-1\)

0 2 2 -1 y=-3/2x+2

20 tháng 12 2023

Câu 4:B

Câu 7: A

Câu 8: B

Câu 11: C

11 tháng 12 2016

gdgdgfgdgd

12 tháng 12 2016

tội nghiệt bạn giữa cái bài từ hôm qua tới giờ mà chưa ai giải

9 tháng 2 2020

a) Ta có : \(y=f\left(x\right)=2x+1\)

Thay \(f\left(-\frac{1}{2}\right)\)vào biểu thức 2x + 1 ta có : \(f\left(-\frac{1}{2}\right)=2\cdot\left(-\frac{1}{2}\right)+1=0\)

b) Với x = 1 thì y = (-2).1 = -2

Ta được \(A\left(1;-2\right)\)thuộc đồ thị hàm số y = -2x

Đường thẳng OA là đồ thị hàm số y = -2x

y x 3 2 1 O 1 2 3 4 -1 -2 -3 -1 -2 -3 y=-2x

c) Thay \(A\left(3;9\right)\)vào đồ thị hàm số y = 3x ta có :

\(y=3\cdot3=9\)(Đẳng thức đúng)

Vậy điểm A thuộc đồ thị hàm số y = 3x

16 tháng 4 2021

Biết mỗi câu 1 =))undefined

Câu 1: 

2)

a) Ta có: \(x^2-12x+27=0\)

\(\Leftrightarrow x^2-9x-3x+27=0\)

\(\Leftrightarrow x\left(x-9\right)-3\left(x-9\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=3\end{matrix}\right.\)

Vậy: S={9;3}

21 tháng 12 2020

Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)

hay \(m\ne3\)

a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì 

Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được: 

\(\left(m-3\right)\cdot0+m+2=-3\)

\(\Leftrightarrow m+2=-3\)

hay m=-5(nhận)

b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì 

\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1

Câu 2: 

c) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=2x+6\)

\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow x^2-4x+4=16\)

\(\Leftrightarrow\left(x-2\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

Thay x=6 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot6^2=18\)

Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)

Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)

Câu 3: 

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)

Ta có: \(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)

\(=2^3-3\cdot\left(-1\right)\cdot2\)

\(=8+3\cdot2\)

\(=8+6=14\)

Vậy: P=14