K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có

OM chung

góc HOM=góc KOM

=>ΔOHM=ΔOKM

b: ΔOHM=ΔOKM

=>MH=MK

c: góc HMK=180-120=60 độ

=>ΔMHK đều

28 tháng 5 2021

x O y z A B I N M T

a) Xét △OIA và △OIB có:

OA =  OB

\(\widehat{AOI}=\widehat{BOI}\)

OI  : cạnh chung

Suy ra △OIA = △OIB (c.g.c)

Ta lại có △OAB có OA  = OB nên △OAB là tam giác cân tại O

Vì Oz là đường phân giác của △OAB nên Oz đồng thời là đường

cao của △OAB.

Suy ra \(Oz\perp AB\)(*)

b)△INO có \(\widehat{OIN}+\widehat{N}+\widehat{ION}\)= 180o (tổng ba góc của một tam giác)

△IMO có \(\widehat{OI}M+\widehat{M}+\widehat{IOM}\)= 180o (tổng ba góc của một tam giác)

Mà \(\widehat{ION}=\widehat{IOM};\widehat{N}=\widehat{M}=90^o\)

Nên \(\widehat{OIN}=\widehat{OIM}\)

Xét △IMO và △INO có :

\(\widehat{OIN}=\widehat{OIM}\)

IO : cạnh chung

\(\widehat{ION}=\widehat{IOM}\)

Suy ra △IMO = △INO (g.c.g) (**)

Nên  IM = IN

c) Từ (*) suy ra  \(\widehat{BIO}=\widehat{AIO}=90^o\)

Mặc khác \(\widehat{BIO}=\widehat{BIM}+\widehat{MIO}\)

\(\widehat{AIO}=\widehat{AIN}+\widehat{NIO}\)

\(\widehat{MIO}=\widehat{NIO}\)(từ (**) suy ra)

Nên \(\widehat{BIM}=\widehat{AIN}\)

d)Gọi T là giao điểm của MN và tia Oz

Từ (*) suy  ra △AIO vuông tại I và △OTN vuông tại T.

nên \(\widehat{AIO}=\widehat{NTO}=90^o\)

△AIO có: \(\widehat{A}+\widehat{AIO}+\widehat{IOA}\) = 180o(tổng ba góc của một tam giác)

△OTN có: \(\widehat{TNO}+\widehat{NTO}+\widehat{TON}\) = 180o(tổng ba góc của một tam giác)

Mà \(\widehat{AIO}=\widehat{NTO}=90^o\)và \(\widehat{IOA}=\widehat{TON}\)

 Suy ra  \(\widehat{A}=\widehat{TNO}\)

Nên  MN//AB

 

 

 

30 tháng 5 2021

b) Xét ΔIMO và ΔINO có:

          IO chung 

        ∠IOM=∠ION(gt)

        ∠IMO=∠INO(=90)

⇒ΔIMO=ΔINO(cạnh huyền-góc nhọn)

⇒IM=IN(hai cạnh tương ứng)

Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

Suy ra: MA=MB

Xét ΔOKM vuông tại K và ΔOHM vuông tại H có

OM chung

\(\widehat{KOM}=\widehat{HOM}\)

Do đó;ΔOKM=ΔOHM

Suy ra: OH=OK

=>AH=BK

Xét ΔMAH vuông tại H và ΔMBK vuông tại K có

MA=MB

AH=BK

Do đó: ΔMHA=ΔMKB

A .

Vì OA // MB ( giả thuyết )

=> Góc AOM = Góc OMB ( 1 )

Vì AM = OB ( giả thuyết )

=> Góc AMO = Góc MOB ( 2 )

Từ ( 1 ) và ( 2 )

=> Góc AOM = Góc MOB ; Góc AMO = Góc BMO

Vậy hình tam giác AMO = Hình tam giác BMO ( góc - cạnh - góc )

= > AO = OB ; MA = MB ( 2 cạnh tương ứng )