Trên mặt phẳng tọa độ Oxy, cho ba điểm A(– 2; 4), B(– 3; 1), C(1; 5). Diện tích tam giác ABC bằng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Điểm N(x;y;0). Tìm x;y từ hệ hai phương trình NA = NB = NC.
a:
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}x+2=-x+4\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2=3\end{matrix}\right.\)
Thay x=1 và y=3 vào (d3), ta được:
\(1\cdot m+m=3\)
=>2m=3
=>\(m=\dfrac{3}{2}\)
Ta có :
AB = \(\sqrt{\left(1+3\right)^2+\left(4+4\right)^2}=4\sqrt{5}\)
AC = \(\sqrt{\left(1-1\right)^2+\left(4-0\right)^2}=4\)
BC = \(\sqrt{\left(-3-1\right)^2+\left(-4-0\right)^2}=4\sqrt{2}\)
=> p = \(\frac{4\sqrt{5}+4+4\sqrt{2}}{2}\)
=> \(S_{\Delta ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}=\sqrt{64}=8\)
( TÍNH THEO CÔNG THỨC HERON )
Ta có :
AB = √(1+3)2+(4+4)2=4√5
AC = √(1−1)2+(4−0)2=4
BC = √(−3−1)2+(−4−0)2=4√2
=> p = 4√5+4+4√22
=> SΔABC=√p(p−AB)(p−AC)(p−BC)=√64=8
* Gọi phương trình đường thẳng AB là y = ax + b.
Tọa độ các điểm A, B phải thỏa mãn phương trình y = ax + b nên ta có:
Vậy phương trình của đường thẳng AB là y = 2/5x + 21/5.
*Gọi phương trình của đường thẳng BC là y = a’x + b’.
Tương tự như trên ta có:
Vậy phương trình của đường thẳng BC là y = -x + 7.
*Gọi phương trình của đường thẳng AC là y = a’’x + b’’.
Tương tự như trên ta có:
Vậy phương trình của đường thẳng AC là y = 5/2x - 21/2.
Đáp án C
Gọi I(x;y;0) là tâm của mặt cầu (S) ⇒ A I → = x - 1 ; y - 2 ; 4 A I → = x - 1 ; y + 3 ; - 1 A I → = x - 2 ; y - 2 ; - 3
Theo bài ra, ta có
I A = I B I A = I C ⇒ x - 1 2 + y - 2 2 + 4 2 = x - 1 2 + y + 3 2 + - 1 2 x - 1 2 + y - 2 2 + 4 2 = x - 2 2 + y - 2 2 + - 3 2 ⇔ x = - 2 y = 1
Vậy I ( - 2 ; 1 ; 0 ) ⇒ A I → = ( - 3 ; - 1 ; 4 ) ⇒ l = 2 . I A = 2 16 .
AB (-1,-3)
AC (3,1)
BC (4.4)
Ta co : AB.AC= (-1).(3) + (-3).(1) = 0
suy ra : tam giac ABC vuong tai A
S= 1/2.AB.AC
Ban tu tinh do dai AB, AC nhé