cho \(x=\frac{b^2+c^2+a^2}{2ab}\)\(y=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
tính P=x+y+xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) \(\frac{x^2-16}{4x-x^2}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
c)
\(\frac{(x+y)^2-z^2}{x+y+z}=\frac{(x+y-z)(x+y+z)}{x+y+z}=x+y-z\)
d)
Biểu thức không rút gọn được
e)
\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b)^3-3ab(a+b)+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\frac{(a+b+c)(a^2+b^2+c^2-ac-bc+2ab)-3ab(a+b+c)+3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+3abc}{a^2+b^2+c^2-ab-bc-ac}=a+b+c+\frac{3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)
Mặt khác : x > y > 0 \(\Rightarrow x=2y\)
Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
a) Dễ tự làm đi
b) Xét 1 + a2 = ab + bc + ca + a2
= b(c + a) + a(c + a)
= (c + a)(b + a)
Cmtt ta có : 1 + b2 = (c + b)(a + b)
1 + c2 = (b+c)( a + c)
Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1
Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca
= a2 - ab + bc - ca
= a(a-b) - c(a-b)
= (a-b)(a-c)
Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)
c2 + 2ab - 1 = (c-a)(c-b)
Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
= -1
\(P=x+y+xy\Leftrightarrow P+1=\left(x+1\right)\left(y+1\right)=\left(\frac{b^2+c^2-a^2}{2bc}+1\right)\left(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1\right)\)
\(=\left(\frac{\left(b+c\right)^2-a^2}{2bc}\right)\left(\frac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}\right)=\frac{b^2+2bc+c^2-b^2+2bc-c^2}{2bc}=\frac{4bc}{2bc}=2\)
\(\Rightarrow P=1\)
Nhận xét đề Toán. Có 2 cách giải cơ bản cho bài toán dạng này. 1 là thế trực tiếp x và y vào P và tính luôn, cách này quá thường, ai cũng nhìn ra, chỉ xài khi ta bí cách 2. Cách 2 là biến đổi P rồi mới thế.
Ở đây mình trình bày cách 2.
P = x + y + xy = x + (x +1) * y
= x + P1
P1 =( \(\frac{b^2+c^2-a^2}{2bc}\)+ 1) * \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
= \(\frac{\left(b+c\right)^2-a^2}{2bc}\)* \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
= \(\frac{a^2-\left(b-c\right)^2}{2bc}\)
P = x + P1 = \(\frac{b^2+c^2-a^2}{2bc}\)+ \(\frac{a^2-\left(b-c\right)^2}{2bc}\)= \(\frac{2bc}{2bc}\)= 1
Chúc bạn ngày càng học giỏi và xinh gái.
\(b.=\frac{1\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{1c-1a+1a-1b+1b-1c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)