Chứng minh rằng:
b)\(24^{54}.54^{24}.2^{10}\)chia hết cho\(72^{63}\)
c)\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho \(10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 87 - 218 = 221 - 218 = 217 ( 24 - 2) = 217 ( 16-2) = 217 * 14 chia het cho 14
b. 55 - 54 + 53 = 53 ( 52 - 5 + 1) = 53 * 21 chia het cho 7
con nhung bai lai ban tu giai nhe , con neu thac mac hoi ban
\(7^6-7^5-7^4=7^4\left(7^2-7-1\right)=7^4.55\)
mà 55 chi hết cho 11
suy ra dãy số trên chia hết cho 11
d) 2454.524.210 = (23.3)54.524.210 = 2 162.354.524.210 = 2172.354.524
7263 = (23.32)63 = 2189.3126 chia hết cho 2172.354
=> 7263 chia hết cho 2454.524.210
Đề phải sửa lại là: 2454.524.210 chia hết 7263
e) ) 3n+2-2n+2+3n+2n = 3n .(32 +1) + 2n (1 + 22) = 10.3n + 5.2n
10.3n chia hết cho 10; 5.2n = 10.2n-1 chia hết cho 10
=> 10.3n + 5.2n chia hết cho 10 => đpcm
b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại
c) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.9-2^n.4+3^n.1-2^n.1\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n.2^{n-1}\right)\)