Tìm n biết:
\(3^{-1}\cdot3^n+6\cdot3^{n-1}=7\cdot3^6\)
Giúp mk nkoa! Còn 15'36 là hết tg rồi!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét vế trái :\(3^{-1}.3^n+6.3^{n-1}=\frac{1}{3}.3^n+6.3^{n-1}=3^{n-1}+6.3^{n-1}=7.3^{n-1}\)
So sánh với vế phải , suy ra \(3^{n-1}=3^6\Leftrightarrow n-1=6\Leftrightarrow n=7\)
Ta có : \(3^{-1}.3^n+5.3^{n+1}=162\)
\(\Leftrightarrow3^{-1}.3^n+15.3^n=162\)
\(\Leftrightarrow3^n\left(3^{-1}+15\right)=162\)
\(\Leftrightarrow3^n\frac{46}{3}=162\)
\(\Leftrightarrow3^n=\frac{162.3}{46}=\frac{243}{23}\) (đề sai òi e ơi)
a: \(5^3\cdot25^n=5^{3n}\)
\(\Leftrightarrow5^{3n}=5^3\cdot5^{2n}\)
=>3n=2n+3
hay n=3
b: \(a^{\left(2n+6\right)\left(3n-9\right)}=1\)
=>(2n+6)(3n-9)=0
=>n=-3 hoặc n=3
c: \(\dfrac{1}{3}\cdot3^n=7\cdot3^2\cdot3^4-2\cdot3^n\)
\(\Leftrightarrow3^n\cdot\dfrac{1}{3}+3^n\cdot2=7\cdot3^6\)
\(\Leftrightarrow3^n=3^7\)
hay n=7
\(a)A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\dfrac{2^{12}.3^5-\left(2^2\right)^63.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(A=\dfrac{2^{12}.3^5-2^{12}.3^5}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^6.7^3+5^9.7^3.2^3}\)
\(A=\dfrac{0}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^6.7^3\left(1+5^3+2^3\right)}\)
\(A=0-\dfrac{5^4.\left(-6\right)}{1+125+8}\)
\(A=0-\dfrac{625.\left(-6\right)}{134}\)
\(A=\dfrac{-3750}{134}\)\(=\dfrac{-1875}{67}\)
\(b)3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=(3^n.9+3^n)-\left(2^n.4+2^n\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
\(Suy\) \(ra:\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
b. Ta có: \(3^{n +2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n.\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n.10-2^{n-1}.10⋮10\)
2:
\(B=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)
vào đây nha https://coccoc.com/search/math#query=+3%5E%E2%88%921%C2%B73%5En%2B6%C2%B73%5En%E2%88%921%3D7%C2%B736++
\(3^{-1}\cdot3^n+6\cdot3^{n-1}=7\cdot3^6\)
\(3^{n-1}+6\cdot3^{n-1}=7\cdot3^6\)
\(3^{n-1}\left(1+6\right)=7\cdot3^6\)
\(3^{n-1}\cdot7=7\cdot3^6\)
\(\Rightarrow3^{n-1}=3^6\)
\(\Rightarrow n-1=6\)
\(n=6+1=7\)