Max P = căn x-5 + căn 13-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{x-5}+\sqrt{13-x}\)
\(P^2=\left(\sqrt{x-5}+\sqrt{13-x}\right)^2\)
= x-5 +13 - x + 2\(\sqrt{\left(x-5\right)\left(13-x\right)}\)
=8+2\(\sqrt{\left(x-5\right)\left(13-x\right)}\)
theo BDT cosi ta co
2\(\sqrt{\left(x-5\right)\left(13-x\right)}\) \(\le x-5+13-x\)=8
8+2\(\sqrt{\left(x-5\right)\left(13-x\right)}\le8+8=16\)
\(P^2\le16\Leftrightarrow P\le4\Rightarrow maxP=4\)
dau = xay ra <=> x-5=13 -x <=> x=9
\(A=\sqrt{x-2019}+\sqrt{2020-x}\ge\sqrt{x-2019+2020-x}=1\)
\(A_{min}=1\) khi \(\left[{}\begin{matrix}x=2019\\x=2020\end{matrix}\right.\)
\(A\le\sqrt{2\left(x-2019+2020-x\right)}=\sqrt{2}\)
\(A_{max}=\sqrt{2}\) khi \(x-2019=2020-x\Leftrightarrow x=\frac{4039}{2}\)
Bài 2 :
a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)
\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)
\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)
\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)
\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.