K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

10 tháng 7 2016

a. A = 4 + 22 + 23 + ... + 230

Đặt B = 22 + 2+ ... + 230

2B = 23 + 24 + ... + 231

2B - B = 231 - 22

B = 231 - 4

A = 4 + 231 - 4 = 231, là lũy thừa của 2

=> đpcm

b. A = 3 + 32 + 33 + ... + 3106

3A = 32 + 33 + 34 + ... + 3107

3A - A = 3107 - 3

2A = 3107 - 3

2A + 3 = 3107, là lũy thừa của 3

=> đpcm

Ủng hộ mk nha ^_-

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

25 tháng 10 2015

\(3A=3^2+3^3+3^4+.....+3^{100}\)

\(2A=3A-A=3^2+3^3+3^4+.....+3^{100}-\left(3+3^2+3^3+.....+3^{99}\right)\)

\(2A=3^2+3^3+3^4+.....+3^{100}-3-3^2-3^3-.....-3^{99}\)

\(2A=3^{100}-3\)

Vậy \(2A+3=3^{100}-3+3=3^{100}\)là một lũy thừa của 3

11 tháng 1

Câu 3:

\(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-3\) 

Mà: \(2A+3=3^N\)

\(\Rightarrow3^{101}-3+3=3^N\)

\(\Rightarrow3^{101}=3^N\)

\(\Rightarrow N=101\)

Vậy: ... 

Câu 1:

\(A=4+2^2+...+2^{20}\)

Đặt \(B=2^2+2^3+...+2^{20}\)

=>\(2B=2^3+2^4+...+2^{21}\)

=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)

=>\(B=2^{21}-4\)

=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2

Câu 6:

Đặt A=1+2+3+...+n

Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)

=>\(A=\dfrac{n\left(n+1\right)}{2}\)

=>\(A⋮n+1\)

Câu 5:

\(A=5+5^2+...+5^8\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

4 tháng 7 2023

mình biết làm rồi. xin lỗi đã làm phiền mọi người

 

15 tháng 11 2017

a, Có 2A = 4.2+2^3+2^4+...+2^21

A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21

=> A là lũy thừa cơ số 2

b, Có 3A=3^2+3^3+3^4+...+3^101

2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3

=> 2A+3 = 3^101-3+3 = 3^101

=> A là lũy thừa của 3

k mk nha