K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

mình biết làm rồi. xin lỗi đã làm phiền mọi người

 

10 tháng 7 2016

a. A = 4 + 22 + 23 + ... + 230

Đặt B = 22 + 2+ ... + 230

2B = 23 + 24 + ... + 231

2B - B = 231 - 22

B = 231 - 4

A = 4 + 231 - 4 = 231, là lũy thừa của 2

=> đpcm

b. A = 3 + 32 + 33 + ... + 3106

3A = 32 + 33 + 34 + ... + 3107

3A - A = 3107 - 3

2A = 3107 - 3

2A + 3 = 3107, là lũy thừa của 3

=> đpcm

Ủng hộ mk nha ^_-

25 tháng 10 2015

\(3A=3^2+3^3+3^4+.....+3^{100}\)

\(2A=3A-A=3^2+3^3+3^4+.....+3^{100}-\left(3+3^2+3^3+.....+3^{99}\right)\)

\(2A=3^2+3^3+3^4+.....+3^{100}-3-3^2-3^3-.....-3^{99}\)

\(2A=3^{100}-3\)

Vậy \(2A+3=3^{100}-3+3=3^{100}\)là một lũy thừa của 3

12 tháng 8 2018

a) \(A=3^1+3^2+3^3+...+3^{99}\)

        \(=\left(3^1+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

         \(=3.\left(1+3+3^2\right)+...+3^{97}.\left(1+3+3^2\right)\)

          \(=13.\left(3+...+3^{97}\right)⋮13\)

Vậy A chia hết cho 13

b) \(3A=3^2+3^3+3^4+...+3^{100}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3^1+3^2+3^3+...+3^{99}\right)\)

\(\Rightarrow2A=3^{100}-3\)

\(\Rightarrow2A+3=3^{100}=\left(3^{50}\right)^2\)

Vậy 2A + 3 là một lũy thừa của 3

11 tháng 11 2016

Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200

=> 2A = 2 + 22 + 23 + ....... + 2201

=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 ) 

=>        A = 2201 - 1 

=>  A + 1 = 2201

11 tháng 11 2016

A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200

2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201

2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )

           -  ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )

A         = 2 ^ 201 - 1

=> A + 1 = 2 ^ 201

B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005

3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006

3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )

            - ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )

2B      = 3 ^ 2006 - 3

=> 2B = 3 ^ 2006

Vậy 2B + 3 là lũy thừa của 3

10 tháng 8 2018

\(A=3+3^2+3^3+3^4+...+3^{100}\)

=>  \(3A=3^2+3^3+3^4+3^5+...+3^{101}\)

=>  \(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

=>  \(2A=3^{101}-3\)

=> \(2A+3=3^{101}\)

Vậy 2A + 3  là lũy thừa của 3

26 tháng 9 2018

Ta có: \(A=3+3^2+3^3+3^4+...+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}-3+3=3^{101}\)

Vậy ...

\(A=3+3^2+3^3+....+3^{99}\)

\(\Rightarrow3A=3^2+3^3+.....+3^{100}\)

\(\Rightarrow3A-A=3^{100}-3\)

Thế vào ta dc :

 \(2A+3=3^x\)

\(\Rightarrow2.\frac{3^{100}-3}{2}+3=3^x\)

\(\Rightarrow3^{100}-3+3=3^x\)

\(\Rightarrow3^{100}=3^x\Rightarrow x=100\)

Vậy .................

27 tháng 3 2020

Câu 1:

2A=2+22+...+2201

A=2A-A=2201-1

⇒A+1=2201 là một lũy thừa.

Câu 2:

3B=32+33+...+32006

2B=3B-B=32006-3

⇒2B+3=32006 là một lũy thừa của 3(ĐPCM)

Câu 3 không rõ đề nhé!

27 tháng 3 2020

bạn thử xem lại xem bạn có chép sai ở đâu ko nhé banh

15 tháng 1 2020

\(A=1-3+3^2-3^3+3^4...-3^{2003}+3^{2004}\)

\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2004}+3^{2005}\)

\(\Rightarrow3A+A=3^{2005}+1\)

\(\Rightarrow4A=3^{2005}+1\)

\(\Rightarrow4A-1=3^{2005}+1-1\)

\(\Rightarrow4A-1=3^{2005}\)

\(\Rightarrow4A-1\) là một lũy thừa của \(3\)

15 tháng 1 2020

cảm ơn nhiều😍😍😍