Ch0 a>0 và n là 1 số tự nhiên
Chứng minh rằng an+1an−2⩾n2(a+1a−2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)
Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)
Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)
=> \(a^2+b^2+a+b⋮d^2\)
Lại vì \(a⋮d\) và \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)
=> \(a+b⋮d^2\)
=> \(a+b\ge d^2\) (đpcm)
Điều kiện: n > 3
Xét 3 số tự nhiên liên tiếp: n^2 - 1; n^2; n^2 + 1, trong 3 số này có 1 số chia hết cho 3
Do n nguyên tố > 3 => n không chia hết cho 3 => n^2 không chia hết cho 3
Mà n^2 - 1 nguyên tố > 3 vì n > 3 => n^2 + 1 chia hết cho 3
Mà n^2 + 1 > 3 => n^2 + 1 là hợp số ( đpcm)