K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

a. \(P=\left(\frac{x^2+2x}{x^3+2x^2+5x+10}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)

   \(P=\left(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x^2+5\right)}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)

  \(P=\left(\frac{x}{x^2+5}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)

\(P=\frac{x+4}{x^2+5}.\frac{x^2+5}{x+1}\)\(=\frac{x+4}{x+1}\)

phần b em tự giải nhé chị chỉ giải đc đến đây  thôi

24 tháng 12 2018

 a)  P = (\(\frac{x\cdot\left(x+2\right)}{\left(x^2+5\right)\cdot\left(x+2\right)}+\frac{4}{x^2+5}\))*\(\frac{x^2+5}{x+1}\)=\(\frac{x+4}{x^2+5}\cdot\frac{x^2+5}{x+1}\)=\(\frac{x+4}{x+1}\) (ĐKXĐ: x\(x=\left\{-2;-1\right\}\)

b) TA CÓ : P= \(\frac{x+4}{x+1}=1+\frac{3}{x+1}\forall x\ne\left\{-2;-1\right\}\) . VẬY P \(\inℤ\) KHI \(\frac{3}{X+1}\) \(ℤ\in\) \(\Rightarrow x+1\)LÀ ƯỚC CỦA 3 \(\Rightarrow x=+1=\left\{-3;-1;1;3\right\}\Rightarrow x=\left\{-4;0;2\right\}\)

* x=-2 thì P=-4 (NHÂN),x=-1 thì P KO  XÁC ĐỊNH

23 tháng 6 2017

a) Điều kiện : \(x\ne2;x\ne3\)

 \(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

23 tháng 6 2017

b) Điều kiện \(x\in Z;x\ne2;x\ne3\)

Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên

\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)

mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)

1 tháng 1 2018

a)\(A=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\left(ĐK:x\ne0;-5\right)\)

\(\Leftrightarrow A=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}\)

\(\Leftrightarrow A=\frac{x+5}{5}\)

b)Để A=-4 \(\Leftrightarrow\frac{x+5}{5}=-4\)

                  \(\Leftrightarrow x+5=-20\)

                   \(\Leftrightarrow x=-25\)

1 tháng 1 2018

a).....

\(=\frac{x^2}{5\left(x+5\right)}+\frac{2x-10}{x}+\frac{50+5x}{x\left(x+5\right)}\)                                MTC= 5x (x+5)                 ĐK\(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

\(=\frac{x^2.x}{5x\left(x+5\right)}+\frac{5.\left(2x-10\right).\left(x+5\right)}{5x\left(x+5\right)}+\frac{5.\left(50+5x\right)}{5x\left(x+5\right)}\)

\(=\frac{x^3+\left(10x-50\right).\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+50x-50x-250+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)

\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)

\(=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

b) A=-4

=>\(\frac{x+5}{5}=-4\)

=> x = -25

c)

d) Để A đạt gt nguyên thì 5\(⋮\)x+5

=> \(\left(x+5\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

*x+5=1 => x=-4 \(\in Z\)

*x+5=-1 => x=-6\(\in Z\)

*x+5=5  => x=0\(\in Z\)

*x+5=-5  => x=-10\(\in Z\)

Vậy...........

10 tháng 12 2020

\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

 \(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)

\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)

\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)

Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)

c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z

=> -2x ⋮ x + 1

=> -2x - 2 + 2 ⋮ x + 1

=> -2( x + 1 ) + 2 ⋮ x + 1

Vì -2( x + 1 ) ⋮ ( x + 1 )

=> 2 ⋮ x + 1

=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }

x+11-12-2
x0-21-3

Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy x ∈ { -3 ; -2 ; 0 ; 1 }

đè hinh như là 6\(\sqrt{x}\) nhi bạn

6 tháng 7 2016

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

6 tháng 7 2016

cảm ơn nhiều

23 tháng 7 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-12}{x^2-5x+6}-\frac{x+3}{x-2}+\frac{2x}{x-3}\)

\(\Leftrightarrow A=\frac{2x-12-x^2+9+2x^2-4x}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x^2-2x-3}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{\left(x-3\right)\left(x+1\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x+1}{x-2}\)

b) Thay \(x=5\)vào A ta được :

\(A=\frac{5+1}{5-2}=2\)

c) Để \(A\inℤ\)

\(\Leftrightarrow x+1⋮x-2\)

\(\Leftrightarrow3⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x\in\left\{1;3;-1;5\right\}\)

Vì \(x\ne3\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{1;-1;5\right\}\)

23 tháng 7 2020

Bạn xem lại đề !

6 tháng 12 2016

f) Tìm x để F>0