Chứng minh rằng nếu tổng \(a+b\)là một số nguyên tố thì \(a\)và \(b\)phải là hai số nguyên tố cùng nhau .
Các thần đồng ơi giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử k là ước nguyên tố của a+b (k∈N∗)
⇒a+b ⋮ k.
Vì a+b⋮k⇒a⋮k và b⋮k
⇒k∈ƯC(a;b)⇒k∈ƯC(a;b)
Mà nếu a và b nguyên tố cùng nhau (hay (a,b)=1) thì ƯCLN(a,b)=1
⇒k=1không phải là số nguyên tố trái với giả thiết đặt ra
Do đó không tồn tại ước nguyên tố k của a+b k∈N∗
Do đó a+b nguyên tố cùng nhau
\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)
\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn
\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)
\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy 3n+10 và 3n+9 ntcn
Bạn tham khảo nghen !!!
Gọi UCLN ( a,a+b ) = d ( d E N* )
Ta có :
a chia hết cho d
a + b chia hết cho d
Từ đó ta có :
a + b - a chia hết cho d
=> b chia hết cho d
Mà a chia hết cho d ; b chia hết cho d => d E ƯC ( a,b )
Mặt khác ƯCLN ( a,b ) = 1 nên 1 : d
Suy ra D E Ư ( 1 ) = { 1 } hay d = 1
Vậy nếu tổng a + b là một số nguyên tố thì a và b phải là hai số nguyên tố cùng nhau