\(\left(x\cdot5\right)+\left(x\cdot5\right)=25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{2^{13}\cdot5^7\left(2^{17}+5^{20}\right)}{2^{10}\cdot5^7\left(2^{17}+5^{20}\right)}=2^3\)
b: \(M=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(=3^{2\cdot1\cdot13\cdot12}=3^{312}\)
\(36.\left(\frac{1}{1}-\frac{1}{3}-\frac{1}{5}+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}-\frac{1}{29}\right).x=\frac{4}{25}\)
Triệt tiêu còn
\(36.\left(\frac{1}{1}-\frac{1}{29}\right).x=\frac{4}{25}\)
từ đây dễ rồi, tình lần lượt rồi tìm x nhé
\(15-\left\{2.\left[\left(2x-4\right).5\right].3.\left(x+1\right)\right\}=12-x\)
\(15-\left\{\left[10x-20\right].6.\left(x+1\right)\right\}=12-x\)
\(15-\left\{10x-20.6x+1\right\}=12-x\)
\(15-\left\{10x-120x+1\right\}=12-x\)
\(15-\left(-110x\right)-1=12-x\)
\(15+110x-1=12-x\)
\(110x+x=12-15+1\)
\(111x=-2\)
\(x=\dfrac{-2}{111}\)
a.15-(5-2x)=-4
\(\Leftrightarrow\)15-5+2x=-4
\(\Leftrightarrow\)2x=-4-15+5
\(\Leftrightarrow\)2x=-14
\(\Leftrightarrow\)x=-7
b.TH1:x-3\(\ge\)0 \(\Rightarrow\)x\(\ge\)3
Ta có \(|\)x-3\(|\)=x-3
PT trên\(\Leftrightarrow\)x-3+1=4
\(\Leftrightarrow\)x=4+3-1
\(\Leftrightarrow\)x=6(nhận)
TH2:x-3<0\(\Leftrightarrow\)x<3
Ta có:\(|\)x-3\(|\)=-x+3
PT trên\(\Leftrightarrow\)-x+3+1=4
-x=4-3-1
x=0(nhận)
Vậy S={0;6}
\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}=\frac{2.2.2.5.7.5.5.7.7.7}{2.5.7.7.2.5.7.7}=\frac{2.5}{1}=10\)
Ko biết có đúng ko
\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}=\frac{2^3.\left(5.5^2\right).\left(7.7^3\right)}{2^2.5^2.7^{2^2}}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=2.5=10\)
Đặt A=\(\dfrac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
A=\(\dfrac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}\)
A=\(\dfrac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
A=2.\(5^2\)
A=2.25
A=50
\(B=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3}{2^7\cdot5^2+2^9}\)
\(=\dfrac{1+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{\left(12+1\right)\left(12^2-12+1\right)}{2^7\cdot29}\)
\(=\dfrac{13\cdot133}{2^7\cdot29}=\dfrac{1729}{3712}\)
E = \(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2^2.2.5^2.5.7^4}{2^2.5^2.7^4}=2.5=10\)
\(E=\frac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=2.5=10\)
\(\left(5.x\right)+\left(x.5\right)=25\)
\(\Leftrightarrow10x=25\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)