Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để ý 1+1/x(x+2)=(x2+2x+1)/x(x+2)=(x+1)2/x(x+2)
+ 1+1/1.3=22/1.3 ;......
\(\left(\frac{3}{1.3}+\frac{3}{3.5}+.......+\frac{3}{97.99}\right).\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow[\frac{3}{2}.(\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{2}{97.99})].\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{97}-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow\left(\frac{3}{2}.\frac{98}{99}\right).\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow\frac{49}{33}.\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow\frac{49}{33}.2x+\frac{49}{33}=x+\frac{1}{33}\)
\(\Rightarrow\frac{98}{33}.x+\frac{49}{33}=x+\frac{1}{33}\)
\(\Rightarrow\frac{98}{33}.x-x=\frac{1}{33}-\frac{49}{33}\)
\(\Rightarrow\frac{65}{33}.x=\frac{-16}{11}\)
\(\Rightarrow x=\frac{-16}{11}:\frac{65}{33}\)
\(\Rightarrow x=\frac{-48}{65}\)
Vậy \(x=\frac{-48}{65}\)
Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
=>2A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+...+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\)\(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)
=>A=\(\dfrac{n^2+3n}{4n^2+12n+8}\)
Bài 1 :
Để \(\dfrac{x^3+x^2-x-1}{x^3+2x-3}=0\) thì \(x^3+x^2-x-1=0\)
\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy,.........
\(\left(5.x\right)+\left(x.5\right)=25\)
\(\Leftrightarrow10x=25\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)