Tìm hai số x và y biết rằng:
\(\frac{x}{2}=\frac{y}{5}\) và x.y =10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
Mà xy = 10
\(\Rightarrow\)\(2k.5k=10\)
\(\Rightarrow10k^2=10\)
\(k^2=10:10\)
\(k^2=1\)
\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
Nếu k = 1 thì x = 2 ; y = 5
Nếu k = -1 thì x = -2 ; y = -5
Vậy ...
ADTC dãy tỉ số bằng nhau
Ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{10}{10}=1\)
\(.\frac{x}{2}=1\Leftrightarrow x=2\)
\(.\frac{y}{5}=1\Leftrightarrow y=5\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Bài 1:
\(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\) và x + y - z = 10
\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\)
\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}\) = \(\frac{z}{15}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2
=> \(\frac{x}{8}\) = 2 --> x = 16
\(\frac{y}{12}=2\) --> y = 24
\(\frac{z}{15}=2\) --> z = 30
Vậy x = 16 ; y = 24 ; z = 30
Bài 2:
\(\frac{x}{2}=\frac{y}{5}\) và x . y = 10
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có: x = 2 . k ; y = 5 . k
x . y = 10 => 2k . 5k = 10
=> 10 . \(^{k^2}\) = 10
=> \(^{k^2}\) = 1 --> k = -1 hoặc k = 1
k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5
k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5
Bài 1:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Bài 2:
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
Có: xy=10
\(\Leftrightarrow2k\cdot5k=10\)
\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)
Với k=1 thì x=2 ; y=5
Với k=-1 thì x=-2 ; y=-5
Ta có
\(\frac{x}{2}=\frac{y}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{x.y}{2.10}=\frac{10}{10}=1\)
\(\Rightarrow x^2=4\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
\(y^2=25\Rightarrow\left[\begin{array}{nghiempt}x=5\\x=-5\end{array}\right.\)
Mà 2 và 5 cùng dương nên x;y phải cùng âm hoặc cùng dương
=>\(\left(x;y\right)=\left(2;5\right);\left(-2;-5\right)\)
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\Rightarrow y=\frac{5x}{2}\)
Thay \(y=\frac{5x}{2}\) vào biểu thức xy = 10
\(x\left(\frac{5x}{2}\right)=10\)
\(\Rightarrow5.x^2=10.2\)
\(\Rightarrow5.x^2=20\)
\(\Rightarrow x^2=4\)
=>x = \(\pm\) 2 ; y = \(\pm\) 5
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
\(dat:\frac{x}{2}=\frac{y}{5}=k\)
x=2k ; y=5k
x.y=10k2
10 = 10k2
k2 = 1
k = +-1
Voi : k=1 = > x=1.2=2 ; y=5.1=5
voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Ap dung tinh chat day ti so bang nhau ta co :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)
nhieu qua lam ko het
2). Ta có: x/2=y/3 => x/8 = y/12
y/4=z/5 => y/12 = z/15
=> x/2=y/12=z/15 và x+y-z=10
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10
=> x=2.(-10)=-20
y=12.(-10)=-120
z=15.(-10)=-150
Vậy x=-20; y=-120;z=-150
3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k
=> x=2k
y=5k
Ta có xy = 10
2k.5k =10
10. k2=10
k2 = 10 :10=1
=> k =1; k=-1
+) k = 1
=> x=2.1=2
y=5.1=5
+) k = -1
=> x= 2.(-1) =-2
y=5.(-1) = -5
Vậy x=2;y=5 hoặc x=-2;y=-5
Câu 2:
Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Vậy x=16;y=24;z=30
x/2=y/5=k suy ra x=2k; y=5k
5kx2k=40
10k^2=40
k^2=40:10=4
k=-2(x;y<0)
ta có; x=-2x2=-4
y=-2x5=-10
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x.y}{2.5}=\frac{40}{10}=4\)
\(\Rightarrow\frac{x}{2}=4\Rightarrow x=8\)
\(\Rightarrow\frac{y}{5}=4\Rightarrow y=20\)
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k,y=5k\)
Ta có: \(xy=10\)
\(\Rightarrow2k5k=10\)
\(\Rightarrow10k^2=10\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=2;y=5\)
+) \(k=-1\Rightarrow x=-2;y=-5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(2;5\right);\left(-2;-5\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k\)
\(\Rightarrow y=5k\)
\(\Rightarrow x.y=2k.5k=10k^2\)
\(\Rightarrow k^2=1\Rightarrow\hept{\begin{cases}k=1\\k=-1\end{cases}}\)
Với \(k=1\Rightarrow x=2.1=2\Rightarrow y=5.1=5\)
Với \(k=-1\Rightarrow x=-1.2=-2\Rightarrow y=-1.5=-5\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k\)và y=5k mà x\(\times\)y=10\(\Rightarrow2k\times5k=10\)\(\Leftrightarrow10k^2=10\)
\(\Rightarrow k^2=10:10\Rightarrow k^2=1\)
tiếp theo là ...........................................